[1] Conway B E, Birss V, Wojtowicz J. The role and utilization of pseudocapacitance for energy storage by supercapacitor[J]. Journal of Power Sources, 1997, 66(1/2): 1-14.[2] Pell W G, Conway B E, Adams W A, et al. Electrochemical efficiency in multiple discharge/recharge cycling of supercapacitors in hybrid EV applications[J]. Journal of Power Sources, 1999, 80(1/2): 134-141.[3] Conway B E. Electrochemical supercapacitors[M]. New York: Kluwer Academic/Plenum Publishers, 1999.[4] Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Natural Materials, 2008, 7(11): 845-854.[5] Hall P J, Mirzaeian M, Fletcher S I, et al. Energy storage in electrochemical capacitors: designing functional materials to improve performance[J]. Energy & Environmental Science, 2010, 3(9): 1238-1251.[6] Miller J R. Electrochemical capacitor thermal management issues at high-rate cycling[J]. Electrochimica Acta, 2006, 52(4): 1703-1708.[7] Liu C, Li F, Ma L P, et al. Advanced materials for energy storage[J]. Advanced Materials, 2010, 22(8): E28-E62.[8] Zheng J P, Cygan P J, Jow T R. Hydrous ruthenium oxide as an electrode material for electrochemical capacitors[J]. Journal the Electrochemical Society, 1995, 142(8): 2699-2703.[9] Hu C C, Chang K H, Lin M C, et al. Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors[J]. Nano Letters, 2006, 6(12): 2690-2695.[10] Yuan C Z, Chen L, Gao B, et al. Synthesis and utilization of RuO2·xH2O nanodots well dispersed on poly(sodium 4-styrene sulfonate) functionalized multi-walled carbon nanotubes for supercapacitors[J]. Journal of Materials Chemistry, 2008, 19(2): 246-252.[11] Liu Y, Zhao W W, Zhang X G. Soft template synthesis of mesoporous Co3O4/RuO2·xH2O composites for electrochemical capacitors[J]. Electrochimica Acta, 2008, 53(8): 3296-3304.[12] Liu K C, Anderson M A. Porous nickel oxide/nickel films for electrochemical capacitors[J]. Journal the Electrochemical Society, 1996, 143(1): 124-130.[13] Yuan C Z, Zhang X G, Su L H, et al. Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors[J]. Journal of Materials Chemistry, 2009, 19(32): 5772-5777.[14] Lu Z Y, Zheng C, Liu J F, et al. Stable ultrahigh specific capacitance of NiO nanorod arrays[J]. Nano Research, 2011, 4(7): 658-665.[15] Xia X H, Tu J P, Wang X L, et al. Mesoporous Co3O4 monolayer hollow-sphere array as electrochemical pseudocapacitor material[J]. Chemical Communications, 2011, 47(20): 5786-5788.[16] Zhang F, Yuan C Z, Zhu J J, et al. Flexible films derived from electrospun carbon nanofibers incorporated with Co3O4 hollow nanoparticles as self-supported electrodes for electrochemical capacitors[J]. Advanced Functional Materials, 2013, 23(31): 3909-3915.[17] Xu C L, Zhao Y Q, Yang G W, et al. Mesoporous nanowire array architecture of manganese dioxide for electrochemical capacitor applications[J]. Chemical Communications, 2009, 48: 7575-7577.[18] Reddy A L M, Shaijumon M M, Gowda S R, et al. Multisegmented Au-MnO2/carbon nanotube hybrid coaxial arrays for high-power supercapacitor applications[J]. Journal of Physical Chemistry C, 2010, 114(1): 658-663.[19] Cao Z Y, Wei B Q. V2O5/single-walled carbon nanotube hybrid mesoporous films as cathodes with high-rate capacities for rechargeable lithium ion batteries[J]. Nano Energy, 2013, 2(4): 481-490.[20] Pan A Q, Wu H B, Zhang L, et al. Uniform V2O5 nanosheet-assembled hollow microflowers with excellent lithium storage properties[J]. Energy & Environmental Science, 2013, 6(5): 1476-1479.[21] Su D W and Wang G X. Single-crystalline bilayered V2O5 nanobelts for high-capacity sodium-ion batteries[J]. ACS Nano, 2013, 7(12): 11218-11226.[22] Raju V, Rains J, Gates C, et al. Superior cathode of sodium-ion batteries: orthorhombic V2O5 nanoparticles generated in nanoporous carbon by ambient hydrolysis deposition[J]. Nano Letters, 2014, 14(7): 4119-4124.[23] Kuwabata S, Masui S, Tomiyori H, et al. Charge-discharge properties of chemically prepared composites of V2O5 and polypyrrole as positive electrode materials in rechargeable Li batteries[J]. Electrochimica Acta, 2000, 46(1): 91-97.[24] Delmas C, Auradou H C, Cocciantelli J M, et al. The LixV2O5 system: An overview of the structure modifications induced by the lithium intercalation[J]. Solid State Ionics, 1994, 69(3/4): 257-64. |