[1] Abraham K M. A brief history of non-aqueous metal-air batteries[J]. ECS Transactions, 2008, 3(42): 67-71.[2] Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451(7179): 652- 657.[3] Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature materials, 2012, 11(1): 19-29.[4] Christensen J, Albertus P, Sanchez-Carrera R S, et al. A critical review of Li/air batteries[J]. Journal of the Electrochemical Society, 2011, 159(2): R1-R30.[5] Zhang L L, Zhang X B, Wang Z L, et al. High aspect ratio γ-MnOOH nanowires for high performance rechargeable nonaqueous Lithium-oxygen batteries[J]. Chemical Communications, 2012, 48(61): 7598-7600.[6] Black R, Lee J H, Adams B, et al. The role of catalysts and peroxide oxidation in lithium-oxygen batteries[J]. Angewandte Chemie, 2013, 125(1): 410-414.[7] Gao J, Wu W, Tian Y Y, et al. The electrocatalytic study of LiCoO2 in air electrode[J]. Journal of Electrochemistry, 2012, 18(1): 14-17.[8] Li F, Ohnishi R, Yamada Y, et al. Carbon supported TiN nanoparticles: An efficient bifunctional catalyst for non-aqueous Li-O2 batteries[J]. Chemical Communications, 2013, 49(12): 1175-1177.[9] Dong S, Chen X, Zhang K, et al. Molybdenum nitride based hybrid cathode for rechargeable lithium-O2 batteries[J]. Chemical Communications, 2011, 47(40): 11291-11293.[10] Chen Y, Freunberger S A, Peng Z, et al. Charging a Li-O2 battery using a redox mediator[J]. Nature chemistry, 2013, 5(6): 489-494.[11] Peng Z, Freunberger S A, Chen Y, et al. A reversible and higher-rate Li-O2 battery[J]. Science, 2012, 337(6094): 563-566.[12] Jian Z, Liu P, Li F, et al. Core-shell-structured CNT@RuO2 composite as a high-performance cathode catalyst for rechargeable Li-O2 Batteries[J]. Angewandte Chemie International Edition, 2014, 53(2): 442-446.[13] Lu Y C, Xu Z, Gasteiger H A, et al. Platinum-gold nanoparticles: A highly active bifunctional electrocatalyst for rechargeable lithium-air batteries[J]. Journal of the American Chemical Society, 2010, 132(35): 12170-12171.[14] Wang Z L, Xu D, Xu J J, et al. Graphene oxide gel-derived, free-standing, hierarchically porous carbon for high-capacity and high-rate rechargeable Li-O2 batteries[J]. Advanced Functional Materials, 2012, 22(17): 3699-3705.[15] Cui Y, Wen Z, Liang X, et al. A tubular polypyrrole based air electrode with improved O2 diffusivity for Li-O2 batteries[J]. Energy & Environmental Science, 2012, 5(7): 7893-7897.[16] McCloskey B D, Scheffler R, Speidel A, et al. On the efficacy of electrocatalysis in nonaqueous Li-O2 batteries[J]. Journal of the American Chemical Society, 2011, 133(45): 18038-18041.[17] Débart A, Bao J, Armstrong G, et al. An O2 cathode for rechargeable lithium batteries: The effect of a catalyst[J]. Journal of Power Sources, 2007, 174(2): 1177-1182.[18] Garsuch R R, Le D B, Garsuch A, et al. Studies of lithium-exchanged nafion as an electrode binder for alloy negatives in lithium-ion batteries[J]. Journal of The Electrochemical Society, 2008, 155(10): A721-A724.[19] McCloskey B D, Speidel A, Scheffler R, et al. Twin problems of interfacial carbonate formation in nonaqueous Li-O2 batteries[J]. The Journal of Physical Chemistry Letters, 2012, 3(8): 997-1001.[20] Shui J L, Okasinski J S, Kenesei P, et al. Reversibility of anodic lithium in rechargeable lithium-oxygen batteries[J]. Nature communications, 2013, 4: 2255.[21] Black R, Oh S H, Lee J H, et al. Screening for superoxide reactivity in Li-O2 batteries: Effect on Li2O2/LiOH crystallization[J]. Journal of the American Chemical Society, 2012, 134(6): 2902-2905.[22] Yilmaz E, Yogi C, Yamanaka K, et al. Promoting formation of noncrystalline Li2O2 in the Li-O2 battery with RuO2 nanoparticles[J]. Nano letters, 2013, 13(10): 4679-4684.[23] Black R, Oh S H, Lee J H, et al. Screening for superoxide reactivity in Li-O2 batteries: Effect on Li2O2/LiOH crystallization[J]. Journal of the American Chemical Society, 2012, 134(6): 2902-2905. |