[1] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.[2] Zhu X, Zhu Y, Murali S, et al. Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries[J]. ACS Nano, 2011, 5(4): 3333-3338.[3] Buqa H, Goers D, Holzapfel M, et al. High rate capability of graphite negative electrodes for lithium-ion batteries[J]. Journal of The Electrochemical Society, 2005, 152(2): A474-A481.[4] Aricò A S, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices[J]. Nature materials, 2005, 4(5): 366-377.[5] Jang B, Park M, Chae O B, et al. Direct synthesis of self-assembled ferrite/carbon hybrid nanosheets for high performance lithium-ion battery anodes[J]. Journal of the American Chemical Society, 2012, 134(36): 15010-15015.[6] Kwon K A, Lim H S, Sun Y K, et al. α-Fe2O3 submicron spheres with hollow and macroporous structures as high-performance anode materials for lithium ion batteries[J]. The Journal of Physical Chemistry C, 2014, 118(6): 2897-2907.[7] Zhao B, Liu R, Cai X, et al. Nanorod-like Fe2O3/graphene composite as a high-performance anode material for lithium ion batteries[J]. Journal of Applied Electrochemistry 2014, 44(1): 53-60.[8] Luo J, Liu J, Zeng Z, et al. Three-dimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability[J]. Nano letters, 2013, 13(12): 6136-6143.[9] He C, Wu S, Zhao N, et al. Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material[J]. ACS Nano, 2013, 7(5): 4459-4469.[10] Y Li, Q Zhang, Zhu J, et al. An extremely stable MnO2 anode incorporated with 3D porous graphene-like networks for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(9): 3163-3168.[11] C X Guo, M Wang, Chen T, et al. A hierarchically nanostructured composite of MnO2/conjugated polymer/graphene for high-performance lithium ion batteries[J]. Advanced Energy Materials, 2011, 1(5): 736-741.[12] Wu Z S, Ren W, Wen L, et al. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance[J]. ACS Nano, 2010, 4(6): 3187-3194.[13] Tao L, Zai J, Wang, K, et al. Co3O4 nanorods/graphene nanosheets nanocomposites for lithium ion batteries with improved reversible capacity and cycle stability[J]. Journal of Power Sources, 2012, 202: 230-235.[14]Wang Y, Xu M, Peng Z, et al. Direct growth of mesoporous Sn-doped TiO2 thin films on conducting substrates for lithium-ion battery anodes[J]. Journal of Materials Chemistry A, 2013, 1(42): 13222-13226.[15] Ren Y, Liu Z, Pourpoint F, et al. Nanoparticulate TiO2(B): An anode for lithium-ion batteries[J]. Angewandte Chemie-International Edition, 2012, 124(9): 2206-2209.[16] Wu H B, Chen J S, Hng H H, et al. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries[J]. Nanoscale, 2012, 4(8): 2526-2542.[17] Sun Y, Zhang J, Huang T, et al. Fe2O3/CNTs composites as anode materials for lithium-ion batteries[J]. International Journal of Electrochemical Science, 2013, 8(2): 2918-2931.[18] Chen J, Xu L, Li W, et al. α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications[J]. Advanced Materials, 2005, 17(5): 582-586.[19] Reddy M, Yu T, Sow C H, et al. α-Fe2O3 nanoflakes as an anode material for Li-ion batteries[J]. Advanced Functional Materials, 2007, 17(15): 2792-2799.[20] Wu H, Xu M, Wang Y, et al. Branched Co3O4/Fe2O3 nanowires as high capacity lithium-ion battery anodes[J]. Nano Research, 2013, 6(3): 167-173.[21] Brandt A, Balducci A. Ferrocene as precursor for carbon-coated α-Fe2O3 nanoparticles for rechargeable lithium batteries[J]. Journal of Power Sources, 2013, 230: 44-49.[22] Fei H, Peng Z, Li L, et al. Preparation of carbon-coated iron oxide nanoparticles dispersed on graphene sheets and applications as advanced anode materials for lithium-ion batteries[J]. Nano Research, 2014, 7(4): 1-9.[23] Li Y, Li Z, Shen P K. Simultaneous formation of ultrahigh surface area and three-dimensional hierarchical porous grapheme-like networks for fast and highly stable supercapacitors[J]. Advanced Materials, 2013, 25(17): 2474-2480. [24] Zhang M, Qu B, Lei D, et al. A green and fast strategy for the scalable synthesis of Fe2O3/graphene with significantly enhanced Li-ion storage properties[J]. Journal of Materials Chemistry, 2012, 22(9): 3868-3874.[25] Ang W A, Gupta N, Prasanth R, et al. Facile synthesis and electrochemical properties of alpha-phase ferric oxide hematite cocoons and rods as high-performance anodes for lithium-ion batteries[J]. Journal of Materials Research, 2013, 28(6): 824-831.[26] Reddy M V, Subba R G V, Chowdari B V R, et al. Metal oxides and oxysalts as anode materials for Li ion batteries[J]. Chemical Reviews, 2013, 113(7): 5364-5457.[27] Su L, Zhou Z, Qin X, et al. CoCO3 submicrocube/graphene composites with high lithium storage capability[J]. Nano Energy, 2013, 2(2): 276-282.[28] Su L, Zhong Y, Zhen Z, et al. Role of transition metal nanoparticles in the extra lithium storage capacity of transition metal oxides: A case study of hierarchical core-shell Fe3O4@C and Fe@C microspheres[J]. Journal of Materials Chemistry A, 2013, 1(47): 15158-15166.[29] Yin J, Shi H, Wu P, et al. Graphene-wrapped single-crystalline Fe3O4 nanorods with superior lithium-storage capabilities[J]. New Journal of Chemistry, 2014, 38(9): 4036-4040. |