欢迎访问《电化学(中英文)》期刊官方网站,今天是

电化学(中英文) ›› 2014, Vol. 20 ›› Issue (4): 323-332.  doi: 10.13208/j.electrochem.130882

• 基础电化学近期研究专辑(武汉大学 陈胜利教授主编) • 上一篇    下一篇

室温离子液体自组装金纳米粒子模板化制备内消旋多孔材料增强细胞色素c直接电化学(英文)

李培1,詹东平1*,邵元华2*   

  1. 1. 厦门大学 化学化工学院,固体表面物理化学国家重点实验室,福建 厦门 361005;2. 北京大学 化学与分子工程学院,分子科学国家实验室,北京 100871
  • 收稿日期:2013-08-23 修回日期:2013-12-11 出版日期:2014-08-28 发布日期:2013-12-21
  • 通讯作者: 詹东平,邵元华 E-mail:dpzhan@xmu.edu.cn, yhshao@pku.edu.cn
  • 基金资助:

    This work was supported by the National Natural Science Foundation of China (No. 21021002, No. 20235010, No. 20475003, No. 20420130137 and No. 20173058) and the special 985 project of the Peking University

Room Temperature Ionic Liquid Templated Meso-Macroporous Material by Self-Assembled Giant Gold Nanoparticles and Its Enhancement on the Direct Electrochemistry of Cytochrome c

LI Pei1, ZHAN Dong-ping1, SHAO Yuan-hua2*   

  1. 1. State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China; 2. Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
  • Received:2013-08-23 Revised:2013-12-11 Published:2014-08-28 Online:2013-12-21
  • Contact: ZHAN Dong-ping, SHAO Yuan-hua E-mail:dpzhan@xmu.edu.cn, yhshao@pku.edu.cn
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (No. 21021002, No. 20235010, No. 20475003, No. 20420130137 and No. 20173058) and the special 985 project of the Peking University

摘要: 室温离子液体作为一种软模板用来组装内消旋多孔材料,这种材料是由表面覆盖有半胱氨酸的自组装巨型金纳米粒子构成的. 首先,由于静电相互作用或者配体外部末端的羧基和氨基基团之间的缩合反应,覆盖有半胱氨酸的金纳米粒子能够自组装形成纳米线和亚微米球形粒子. 其次,球形自组装粒子在和疏水性室温离子液体1-辛基-3-甲基咪唑鎓六氟磷酸盐相互摩擦时能形成一种准固态凝胶. 最后,将复合凝胶涂在玻碳电极上,然后在PH = 7.4的磷酸缓冲溶液中用循环伏安法进行极化,由于多余的室温离子液体分散在溶胶中从而形成了一种内消旋多孔结构. 该材料具有良好的导电性和生物大分子亲和性. 由于大的外部表面积和内部的“薄层”效应,细胞色素c的感应显著增强. 实验结果表明,这种内消旋多孔材料在包括生物传感器和生物燃料电池在内的电化学设备方面具有潜在的应用前景.

关键词: 室温离子液体, 自组装, 金纳米粒子, 细胞色素c, 生物传感器

Abstract: Room temperature ionic liquid (RTIL) is used as a soft-template to organize a meso-macroporous material constructed by self-assembled giant gold nanoparticles which are capped by L-cysteine. First, L-cysteine capped gold nanoparticles can self-assembly to form nanowires and sub-micrometer spherical giant particles due to the static interaction and/or the condensation reaction between the carboxyl and amino groups at the outer terminal of the ligand. Second, the spherical assembled particles can form a quasi-solid gel when grinding with a hydrophobic RTIL, 1-octyl-3-metyllimidazolium hexafluorophosphate. Finally, when the composite gel is coated on a glassy carbon electrode and then polarized by using cyclic voltammetry in phosphate buffer solution (PBS, pH = 7.4), a meso-macroporous structure is formed due to the leakage of the surplus of RTIL in the gel. This meso-macroporous structured material has a good conductivity and affinity to biological macromolecules. The faradaic current of cytochrome c can be enhanced significantly due to both the high outer surface area and the inner “thin-layer” effect. The experimental results indicate that this novel meso-macroporous material has potential application for electrochemical devices including biosensors and biofuel cells.

Key words: room temperature ionic liquid, self-assemble, gold nanoparticles, cytochrome c, biosensors

中图分类号: