[1] Uriu-Adams J Y, Keen C L. Copper, oxidative stress, and human health[J]. Molecular Aspects of Medicine, 2005, 26(4/5): 268-298.
[2] Bonham M, O'Connor J M, Hannigan B M, et al. The immune system as a physiological indicator ofmarginal copper status?[J]. British Journal of Nutrition, 2002, 87(5): 393-403.
[3] Kumar V, Kalita J, Bora H K, et al. Relationship of antioxidant and oxidative stress markers in different organs following copper toxicity in a rat model[J]. Toxicology and Applied Pharmacology, 2016, 293: 37-43.
[4] Nriagu J O. Copper in the environment[M]. Wiley, New Jersey, 1979.
[5] Ghazban F, Parizanganeh A, Zamani A, et al. Assessment of heavy metal pollution in water and sediments from the ghalechay river, baychebagh copper mine area, iran[J]. Soil and Sediment Contamination, 2015, 24(2): 172-190.
[6] Arman P, Wain R L. Studies upon the copper fungicides[J]. Annals of Applied Biology, 2008, 46(3): 366-374.
[7] Cerník M, Federer P, Borkovec M, et al. Modeling of heavy metal transport in a contaminated soil[J]. Journal of Environmental Quality, 1994, 23(6): 1239-1248.
[8] Huttunen-Saarivirta E, Rajala P, Bomberg M, et al. EIS study on aerobic corrosion of copper in ground water: Influence of micro-organisms[J]. Electrochimica Acta, 2017, 240: 163-174.
[9] Karami H, Mousavi M F, Yamini Y, et al. On-line preconcentration and simultaneous determination of heavy metal ions by inductively coupled plasma-atomic emission spectrometry[J]. Analytica Chimica Acta, 2004, 509(1): 89-94.
[10] Biller D V, Bruland K W. Analysis of Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb in seawater using the nobias-chelate PA1 resin and magnetic sector inductively coupled plasma mass spectrometry (ICP-MS)[J]. Marine Chemistry,2012, 130: 12-20.
[11] Yebra-Biurrun M C, Carro-Marino N. Flow injection flame atomic absorption determination of Cu, Mn and Zn partitioning in seawater by on-line room temperature sonolysis and minicolumn chelating resin methodology[J]. Talanta, 2010, 83(2): 425-430.
[12] Safavi A, Maleki N, Farjami F. Selective kinetic spectrophotometric determination of copper at nanograms per milliliter level[J]. Talanta, 2001, 54(2): 397-402.
[13] Chaiyo S, Siangproh W, Apilux A, et al. Highly selective and sensitive paper-based colorimetric sensor using thiosulfate catalytic etching of silver nanoplates for trace determination of copper ions[J]. Analytica Chimica Acta, 2015, 866: 75-83.
[14] Weng Z Q, Wang H B, Vongsvivut J, et al. Self-assembly of core-satellite gold nanoparticles for colorimetric detection of copper ions[J]. Analytica Chimica Acta, 2013, 803: 128-134.
[15] Lan G Y, Huang C C, Chang H T. Silver nanoclusters as fluorescent probes for selective and sensitive detection of copper ions[J]. Chemical Communications, 2010, 46(8): 1257-1259.
[16] Tsoutsi D, Guerrini L, Hermida-Ramon J M, et al. Simultaneous sers detection of copper and cobalt at ultratrace levels[J]. Nanoscale, 2013, 5(13): 5841-5846.
[17] Plavsic M, Krznaric D, Branica M. Determination of the apparent copper complexing capacity of sea-water by anodic-stripping voltammetry[J]. Marine Chemistry, 1982, 11(1): 17-31.
[18] Hoyer B, Florence T M, Batley G E. Application of polymer-coated glassy carbon electrodes in anodic stripping voltammetry[J]. Analytical Chemistry, 1987, 59(13): 1608-
1614.
[19] Illuminati S, Annibaldi A, Truzzi C, et al. Determination of water: Soluble, acid-extractable and inert fractions of Cd, Pb and Cu in antarctic aerosol by square wave anodic stripping voltammetry after sequential extraction and microwave digestion[J]. Journal of Electroanalytical Chemistry, 2015, 755: 182-196.
[20] Prasad B B, Fatma S. Electrochemical sensing of ultra trace copper(II) by alga-omniiip modified pencil graphite electrode[J]. Sensors and Actuators B - Chemical, 2016, 229: 655-663.
[21] Tindall G W, Bruckenstein S. A ring-disk electrode study of the electrochemical reduction of copper(II) in 0.2 M sulfuric acid on platinum[J]. Analytical Chemistry, 1968, 40(7): 1051-1054.
[22] Salaun P, van den Berg CMG. Voltammetric detection of mercury and copper in seawater using a gold microwire electrode[J]. Analytical Chemistry, 2006, 78(14): 5052-5060.
[23] Bai Y(白燕), Cheng T(程涛), Li J G(李继革), et al. L-cysteine modified silver electrode and the determination of copper ions[J]. Chinese Journal of Analytical Chemistry(分析化学), 2002, 30(3): 383-383.
[24] Kolb D M, Przasnyski M, Gerischer H. Underpotential deposition of metals and work function differences[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1974, 54(1): 25-38.
[25] Siriangkhawut W, Grudpan K, Jakmunee J. Sequential injection anodic stripping voltammetry with monosegmented flow and in-line UV digestion for determination of Zn(II), Cd(II), Pb(II) and Cu(II) in water samples[J]. Talanta, 2011, 84(5): 1366-1373.
[26] Yang W R, Jaramillo D, Gooding J J, et al. Sub-ppt detection limits for copper ions with gly-gly-his modified electrodes[J]. Chemical Communications, 2001, 19: 1982-1983.
[27] Fan Y C, Xu C, Wang R P, et al. Determination of copper (II) ion in food using an ionic liquids-carbon nano-tubes-based ion-selective electrode[J]. Journal of Food Composition and Analysis, 2017, 62: 63-68.
[28] Sipos L, Nürnberg H W, Valenta P, et al. The reliable determination of mercury traces in sea water by subtractive differential pulse voltammetry at the twin gold electrode[J]. Analytica Chimica Acta, 1980, 115: 25-42.
[29] Hezard T, Fajerwerg K, Evrard D, et al. Gold nanoparticles electrodeposited on glassy carbon using cyclic voltammetry: Application to Hg(II) trace analysis[J]. Journal of Electroanalytical Chemistry, 2012, 664: 46-52.
[30] Hezard T, Fajerwerg K, Evrard D, et al. Influence of the gold nanoparticles electrodeposition method on Hg(II) trace electrochemical detection[J]. Electrochimica Acta, 2012, 73: 15-22.
[31] Holt K B, Sabin G, Compton R G, et al. Reduction of tetrachloroaurate (III) at boron-doped diamond electrodes: Gold deposition versus gold colloid formation[J]. Electroanalysis, 2002, 14(12): 797-803.
[32] Gunawardena G, Hills G, Montenegro I, et al. Electrochemical nucleation: Part I. General considerations[J]. Journal of Electroanalytical Chemistry & Interfacial Electrochemistry, 1982, 138(2): 225-239.
[33] O’Mullane A P, Ippolito S J, Sabri Y M, et al. Premonolayer oxidation of nanostructured gold: An important factor influencing electrocatalytic activity[J]. Langmuir, 2009, 25(6): 3845-3852.
[34] Angerstein-Kozlowska H, Conway B E, Hamelin A, et al. Elementary steps of electrochemical oxidation of single-crystal planes of Au. 1. Chemical basis of processes involving geometry of anions and the electrode surfaces[J]. Electrochimica Acta, 1986, 31(8): 1051-1061.
[35] Abollino O, Giacomino A, Malandrino M, et al. Determination of mercury by anodic stripping voltammetry with a gold nanoparticle - modified glassy carbon electrode[J]. Electroanalysis, 2010, 20(1): 75-83.
[36] Inczedy J. Analytical applications of complex equilibra[J]. Ellis Horwood Publisher, Chicheste, 1976: 1762-1770. |