[1] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38.[2] Turner J A. Sustainable hydrogen production[J]. Science, 2004, 305(5686): 972-974.[3] Shangguan P, Tong S, Li H, et al. Enhanced photoelectrochemical oxidation of water over undoped and Ti-doped α-Fe2O3 electrodes by electrochemical reduction pretreatment[J]. RSC Advances, 2013, 3(26): 10163-10167.[4] Cowan A J, Durrant J R. Long-lived charge separated states in nanostructured semiconductor photoelectrodes for the production of solar fuels[J]. Chemical Society Reviews, 2013, 42(6): 2281-2293.[5] Leng W H, Zhang Z, Zhang J Q, et al. Investigation of the kinetics of a TiO2 photoelectrocatalytic reaction involving charge transfer and recombination through surface states by electrochemical impedance spectroscopy[J]. Journal of Physical Chemistry B, 2005, 109(31): 15008-15023.[6] Leng W H, Barnes P R F, Juozapavicius M, et al. Electron diffusion length in mesoporous nanocrystalline TiO2 photoelectrodes during water oxidation[J]. Journal of Physical Chemistry Letters, 2010, 1(6): 967-972.[7] Kennedy J H, Frese K W. Photooxidation of water at α-Fe2O3 electrodes[J]. Journal of the Electrochemical Society, 1978, 125, 709-714.[8] Soedergren S, Hagfeldt A, Olsson J, et al. Theoretical models for the action spectrum and the current-voltage characteristics of microporous semiconductor films in photoelectrochemical cells[J]. Journal of Physical Chemistry, 1994, 98(21): 5552-5556.[9] Hagfeldt A, Graetzel M. Light-induced redox reactions in nanocrystalline systems[J]. Chemical Reviews, 1995, 95(1): 49-68.[10] LengW H(冷文华), Zhu H Q(朱红乔). An investigation of photocatalytic degradation reactions of pollutants by combination of (photo)electrochemical measurements[J]. Journal of Electrochemistry(电化学), 2013, 19(5): 437-443.[11] Cowan A J, Tang J W, Leng W H, et al. Water s plitting by nanocrystalline TiO2 in a complete photoelectrochemical cell exhibits efficiencies limited by charge recombination[J]. Journal of Physical Chemistry C, 2010, 114(9): 4208-4214.[12] Bisquert J, Vikhrenko V S. Interpretation of the time constants measured by kinetic techniques in nanostructured semiconductor electrodes and dye-sensitized solar cells[J]. Journal of Physical Chemistry B, 2004, 108(7): 2313-2322.[13] Barnes P R F, Anderson A Y, Koops S E, et al. Electron injection efficiency and diffusion length in dye-sensitized solar cells derived from incident photon conversion efficiency measurements[J]. Journal of Physical Chemistry C, 2009, 113(3): 1126-1136.[14] Cowan A J, Leng W, Barnes P R F, et al. Charge carrier separation in nanostructured TiO2 photoelectrodes for water splitting[J]. Physical Chemistry Chemical Physics, 2013, 15(22): 8772-8778.[15] Cheng X F, Leng W H, Liu D P, et al. Electrochemical preparation and characterization of surface-fluorinated TiO2 nanoporous film and its enhanced photoelectrochemical and photocatalytic properties[J]. Journal of Physical Chemistry C, 2008, 112(23): 8725-8734. |