电化学(中英文) ›› 2021, Vol. 27 ›› Issue (1): 63-75. doi: 10.13208/j.electrochem.200515
余志远, 黄蕊*(), 刘杰, 李广, 宋前通, 孙世刚*()
收稿日期:
2020-05-15
修回日期:
2020-06-09
出版日期:
2021-02-28
发布日期:
2020-06-10
通讯作者:
黄蕊,孙世刚
E-mail:rhuang@xmu.edu.cn;sgsun@xmu.edu.cn
基金资助:
Zhi-Yuan Yu, Rui Huang*(), Jie Liu, Guang Li, Qian-Tong Song, Shi-Gang Sun*()
Received:
2020-05-15
Revised:
2020-06-09
Published:
2021-02-28
Online:
2020-06-10
Contact:
Rui Huang,Shi-Gang Sun
E-mail:rhuang@xmu.edu.cn;sgsun@xmu.edu.cn
摘要:
钯(Pd)基催化剂是直接乙醇燃料电池研究中广泛使用的催化剂,进一步提升其性能是推动燃料电池发展的重要方向。本文用一步水热法制备出四面体结构PdCo(PdCo tetrahedron,记为PdCo-TH)和少量铱(Ir)掺杂的PdCo四面体合金纳米粒子(记为PdCoIr-TH)。经TEM、ICP、XPS及CV等表征证实,PdCoIr-TH为三元合金纳米粒子,且掺杂的Ir元素倾向分布在催化剂表层。相比于商业Pd/C催化剂,PdCo-TH/C和PdCoIr-TH/C对乙醇电氧化的催化性能显著增强。研究结果表明,Pd9Co1Ir0.1-TH/C在低电位(< -0.25 V)下具有最高的乙醇电氧化活性和稳定性。Ir掺杂不仅提高了催化剂抗CO毒化的能力还有利于乙醇起始氧化电位负移。同时,随着Ir含量的增加,所制备的纳米催化剂的乙醇电氧化C1产物选择性也随之升高。针对不同组成催化剂反应性的差异,本文认为Co与Ir位点上容易产生OHad物种,这将有利于活性Pd位点上乙醇电氧化中间反应物种的有效转化。除了以上的各位点间的协同效应,三元合金的形成,进一步调控了Pd的d带电子结构,从而促进了催化剂反应性的改变。
余志远, 黄蕊, 刘杰, 李广, 宋前通, 孙世刚. PdCoIr四面体合金纳米催化剂的制备及其对乙醇氧化的电催化性能[J]. 电化学(中英文), 2021, 27(1): 63-75.
Zhi-Yuan Yu, Rui Huang, Jie Liu, Guang Li, Qian-Tong Song, Shi-Gang Sun. Preparation of PdCoIr Tetrahedron Nanocatalysts and Its Performance toward Ethanol Oxidation Reaction[J]. Journal of Electrochemistry, 2021, 27(1): 63-75.
表3
不同催化剂对乙醇电氧化催化活性的比较
Catalyst | Mass activity/(A·mgPd-1) | Solution | Ref. |
---|---|---|---|
Pd9Co1-TH/C | 4.31 | 0.2 mol·L-1 KOH + 1.0 mol·L-1 EtOH | This work |
Pd9Co1Ir0.1-TH/C | 3.44 | ||
Pd/Ni(OH)2/rGO | 1.55 | 1.0 mol·L-1 KOH +1.0 mol·L-1 EtOH | [ |
Pd/NCNTs@NGS | 1.8 | 1.0 mol·L-1 KOH +1.0 mol·L-1 EtOH | [ |
3D-2D PdRu/NiZn | 4.72 | 1.0 mol·L-1 KOH +1.0 mol·L-1 EtOH | [ |
Ni@Pd-Ni NA | 0.622 | 1.0 mol·L-1 KOH +0.5 mol·L-1 EtOH | [ |
PdCuCo HENSs | 3.94 | 1.0 mol·L-1 KOH +1.0 mol·L-1 EtOH | [ |
PdAg nanowires | 2.84 | 1.0 mol·L-1 KOH +1.0 mol·L-1 EtOH | [ |
hollow PdSnNi2.5 | 1 | 1.0 mol·L-1 NaOH +1.0 mol·L-1 EtOH | [ |
Pd2Fe/CNF | 1.89 | 1.0 mol·L-1 KOH +1.0 mol·L-1 EtOH | [ |
[1] |
Wang Y, Zou S Z, Cai W B. Recent advances on electro-oxidation of ethanol on Pt- and Pd-based catalysts: from reaction mechanisms to catalytic materials[J]. Catalysts, 2015,5(3):1507-1534.
doi: 10.3390/catal5031507 URL |
[2] |
Li Z J, Chen Y F, Fu G T, Chen Y, Sun D M, Lee J M, Tang Y W. Porous PdRh nanobowls: facile synjournal and activity for alkaline ethanol oxidation[J]. Nanoscale, 2019,11(6):2974-2980.
URL pmid: 30693934 |
[3] |
Sheng J L, Kang J H, Hu Z X, Yu Y, Fu X Z, Sun R, Wong C P. Octahedral Pd nanocages with porous shells converted from Co(OH)2 nanocages with nanosheet surfaces as robust electrocatalysts for ethanol oxidation[J]. J. Mater. Chem. A, 2018,6(32):15789-15796.
doi: 10.1039/C8TA04181D URL |
[4] |
Dutta A, Datta J. Energy efficient role of Ni/NiO in PdNi nano catalyst used in alkaline DEFC[J]. J. Mater. Chem. A, 2014,2:3237-3250.
doi: 10.1039/c3ta12708g URL |
[5] |
Yang Y Y, Ren J, Li Q X, Zhou Z Y, Sun S G, Cai W B. Electrocatalysis of ethanol on a Pd electrode in alkaline media: an in situ attenuated total reflection surface-enhanc-ed infrared absorption spectroscopy study[J]. ACS Catal., 2014,4(3):798-803.
doi: 10.1021/cs401198t URL |
[6] |
Du W X, Mackenzie K E, Milano D F, Deskins N A, Su D, Teng X W. Palladium-tin alloyed catalysts for the ethanol oxidation reaction in an alkaline medium[J]. ACS Catal., 2012,2(2):287-297.
doi: 10.1021/cs2005955 URL |
[7] |
Pereira A O, Miranda C R. Atomic scale insights into ethanol oxidation on Pt, Pd and Au metallic nanofilms: A DFT with van der Waals interactions[J]. Appl. Surf. Sci., 2014,288:564-571.
doi: 10.1016/j.apsusc.2013.10.074 URL |
[8] |
Fanga X, Wanga L Q, Shen P K, Cui G F, Bianchini C. An in situ Fourier transform infrared spectroelectrochemical study on ethanol electrooxidation on Pd in alkaline solution[J]. J. Power Sources, 2010,195:1375-1378.
doi: 10.1016/j.jpowsour.2009.09.025 URL |
[9] |
Guo J C, Huang R, Li Y, Yu Z Y, Wang L Y, Huang L, Xu B B, Ye J Y, Sun S G. Surface structure effects of high-index faceted Pd nanocrystals decorated by Au submonolayer in enhancing the catalytic activity for ethanol oxidation reaction[J]. J. Phys. Chem. C, 2019,123(38):23554-23562.
doi: 10.1021/acs.jpcc.9b07061 URL |
[10] |
Zhou Z Y, Wang Q A, Lin J L, Tian N, Sun S G. In situ FTIR spectroscopic studies of electrooxidation of ethanol on Pd electrode in alkaline media[J]. Electrochim. Acta, 2010,55:7995-7999.
doi: 10.1016/j.electacta.2010.02.071 URL |
[11] |
Huang W J, Ma X Y, Wang H, Feng R F, Zhou J G, Duchesne P N, Zhang P, Chen F J, Han N, Zhao F P, Zhou J H, Cai W B, Li Y G. Promoting effect of Ni(OH)2 on palladium nanocrystals leads to greatly improved operation durability for electrocatalytic ethanol oxidation in alkaline solution[J]. Adv. Mater., 2017,29(37):1703057.
doi: 10.1002/adma.v29.37 URL |
[12] | Chen Y M(陈玉梅), Liang Z X(梁志修), Chen S L(陈胜利). Synjournal and Electrocatalytic Properties of Ni-Pd/C Catalysts with Pd-enriched Surface[J]. J. Electrochem. (电化学), 2009,15(4):371-375. |
[13] |
Lin H H, Muzzio M, Wei K C, Zhang P, Li J R, Li N, Yin Z Y, Su D, Sun S H. PdAu alloy nanoparticles for ethanol oxidation in alkaline conditions: enhanced activity and C1 pathway selectivity[J]. ACS Appl. Energy Mater., 2019,2:8701-8706.
doi: 10.1021/acsaem.9b01674 URL |
[14] |
Miao B, Wu Z P, Zhang M H, Chen Y F, Wang L C. Role of Ni in bimetallic PdNi catalysts for ethanol oxidation reaction[J]. J. Phys. Chem. C, 2018,122(39):22448-22459.
doi: 10.1021/acs.jpcc.8b05812 URL |
[15] |
Miao B, Wu Z P, Xu H, Zhang M H, Chen Y F, Wang L C. Ir catalysts: Preventing CH3COOH formation in ethanol oxidation[J]. Chem. Phys. Lett., 2017,688:92-97.
doi: 10.1016/j.cplett.2017.09.045 URL |
[16] |
Chang Q W, Kattel S, Li X, Liang Z X, Tackett B M, Denny S R, Zhang P, Su D, Chen J G G, Chen Z. Enhancing C-C bond scission for efficient ethanol oxidation using PtIr nanocube electrocatalysts[J]. ACS Catal., 2019,9(9):7618-7625.
doi: 10.1021/acscatal.9b02039 URL |
[17] |
Liang Z X, Song L, Deng S Q, Zhu Y M, Stavitski E, Adzic R R, Chen J Y, Wang J X. Direct 12-electron oxidation of ethanol on a ternary Au(core)PtIr(shell) electrocatalyst[J]. J. the Am. Chem. Soc., 2019,141(24):9629-9636.
doi: 10.1021/jacs.9b03474 URL |
[18] |
Lai S C S, Kleijn S E F, Öztürk F T Z, Vellinga V C V, Koning J, Rodriguez P, Koper MTM. Effects of electrolyte pH and composition on the ethanol electro-oxidation reaction[J]. Catal. Today, 2010,154(1-2):92-104.
doi: 10.1016/j.cattod.2010.01.060 URL |
[19] |
Zanata C R, Martins C A, Teixeira-Neto É, Giz M J, Camara G A. Two-step synjournal of Ir-decorated Pd nanocubes and their impact on the glycerol electrooxidation[J]. J. Catal., 2019,377:358-366.
doi: 10.1016/j.jcat.2019.07.042 URL |
[20] |
Li S W, Yang H L, Zou H, Yang M, Liu X D, Jin J, Ma J T. Palladium nanoparticles anchored on NCNTs@NGS with a three-dimensional sandwich-stacked framework as an advanced electrocatalyst for ethanol oxidation[J]. J. Mater. Chem. A, 2018,6(30):14717-14724.
doi: 10.1039/C8TA04471F URL |
[21] |
Xu H, Song P P, Zhang Y P, Du Y K. 3D-2D heterostructure of PdRu/NiZn oxyphosphides with improved durability for electrocatalytic methanol and ethanol oxidation[J]. Nanoscale, 2018. 10(26):12605-12611.
URL pmid: 29938253 |
[22] |
Guo F, Li Y J, Fan B A, Liu Y, Lu L L, Lei Y. Carbon- and binder-free core-shell nanowire arrays for efficient ethanol electro-oxidation in alkaline medium[J]. ACS Appl. Mater. Inter., 2018,10(5):4705-4714.
doi: 10.1021/acsami.7b16615 URL |
[23] |
Shu Y L, Shi X Q, Ji Y Y, Wen Y, Guo X Y, Ying Y, Wu Y P, Yang H F. Hollow echinus-like PdCuCo alloy for superior efficient Catal. of ethanol[J]. ACS Appl. Mater. Inter., 2018,10(5):4743-4749.
doi: 10.1021/acsami.7b17731 URL |
[24] |
Lv H, Wang H, Lopes A, Xu D D, Liu B. Ultrathin PdAg single-crystalline nanowires enhance ethanol oxidation electrocatalysis[J]. Applied Catal. B - Environ., 2019,249:116-125.
doi: 10.1016/j.apcatb.2019.02.068 URL |
[25] |
Ning L N, Zhu A M, Deng M, Zhang Q G, Liu Q L. Novel H-PdSnNi catalyst with enhanced ethanol electrooxidation performance in alkaline medium[J]. Electrochim. Acta, 2018,259:1145-1153.
doi: 10.1016/j.electacta.2017.10.112 URL |
[26] |
Wei M, Zhang L L, Luo D, Ding L X, Wang S Q, Wang H H. Graphene-assisted synjournal of PdFe-embedded porous carbon nanofibers for efficient ethanol electrooxidation[J]. Electrochim. Acta, 2018,289:311-318.
doi: 10.1016/j.electacta.2018.09.054 URL |
[27] | Yang T, Wang Y H, Wei W X, Ding X R, He M S, Yu T T, Zhao H, Zhang D E. Synjournal of octahedral Pt-Ni-Ir yolk-shell nanoparticles and their catalysis in oxygen reduction and methanol oxidization under both acidic and alkaline conditions[J]. Nanoscale, 2019,111(48):23206-23216. |
[28] |
Yang T, Ma Y X, Huang Q L, Cao G J. Palladium-iridium nanocrystals for enhancement of electrocatalytic activity toward oxygen reduction reaction[J]. Nano Energy, 2016,19:257-268.
doi: 10.1016/j.nanoen.2015.11.002 URL |
[29] |
Yang T, Ma Y Q, Huang Q L, He M S, Cao G J, Sun X, Zhang D G, Wang M Y, Zhao H, Tong Z W. High durable ternary nanodendrites as effective catalysts for oxygen reduction reaction[J]. ACS Appl. Mater. Inter., 2016,8(36):23646-23654.
doi: 10.1021/acsami.6b05726 URL |
[30] |
Yang T, Cao G J, Huang Q L, Ma Y X, Wan S, Zhao H, Li N, Yin F J, Sun X, Zhang D E, Wang M Y. Truncated octahedral platinum-nickel-iridium ternary electro-catalyst for oxygen reduction reaction[J]. J. Power Sources, 2015,291:201-208.
doi: 10.1016/j.jpowsour.2015.05.032 URL |
[31] |
Zhang J W, Chen M S, Li H Q, Li Y J, Ye J Y, Cao Z M, Fang M L, Kuang Q, Zheng J, Xie Z X. Stable palladium hydride as a superior anode electrocatalyst for direct formic acid fuel cells[J]. Nano Energy, 2018,44:127-134.
doi: 10.1016/j.nanoen.2017.11.075 URL |
[32] |
Hwang S J, Yoo S J, Jeon T Y, Lee K S, Lim T H, Sung Y E, Kim S K. Facile synjournal of highly active and stable Pt-Ir/C electrocatalysts for oxygen reduction and liquid fuel oxidation reaction[J]. Chem. Commun., 2010,46(44):8401-8403.
doi: 10.1039/c0cc03125a URL |
[33] |
Shen S Y, Zhao T S, Xu J B. Carbon-supported bimetallic PdIr catalysts for ethanol oxidation in alkaline media[J]. Electrochim. Acta, 2010,55(28):9179-9184.
doi: 10.1016/j.electacta.2010.09.018 URL |
[34] |
Wang X, Tang Y, Gao Y, Lu T H. Carbon-supported Pd-Ir catalyst as anodic catalyst in direct formic acid fuel cell[J]. J. Power Sources, 2008,175(2):784-788.
doi: 10.1016/j.jpowsour.2007.10.011 URL |
[35] |
Shen S Y, Zhao T S, Xu J B, Li Y S. High performance of a carbon supported ternary PdIrNi catalyst for ethanol electro-oxidation in anion-exchange membrane direct ethanol fuel cells[J]. Energy Envir. Sci., 2011,4(4):1428-1433.
doi: 10.1039/c0ee00579g URL |
[36] |
Kavanagh R, Cao X M, Lin W F, Hardacre C, Hu P. Origin of low CO2 selectivity on platinum in the direct ethanol fuel cell[J]. Angew. Chem. Int. Ed., 2012,51(7):1572-1575.
doi: 10.1002/anie.v51.7 URL |
[1] | 万紫轩, Aidar Kuchkaev, Dmitry Yakhvarov, 康雄武. 单分散Cu-TCPP/Cu2O杂化微球:一种具有优异电还原CO2产C2性能的级联电催化剂[J]. 电化学(中英文), 2024, 30(1): 2303271-. |
[2] | 郑天龙, 欧明玉, 徐松, 毛信表, 王释一, 和庆钢. 一体式可再生燃料电池双功能氧催化剂的研究进展[J]. 电化学(中英文), 2023, 29(7): 2205301-. |
[3] | 杨云锐, 董欢欢, 郝志强, 何祥喜, 杨卓, 李林, 侴术雷. 高性能锂硫电池用钴/碳复合材料硫宿主[J]. 电化学(中英文), 2023, 29(4): 2217003-. |
[4] | 冯辛, 刘博文, 郭可鑫, 范林丰, 王根香, 次素琴, 温珍海. 基于阳极甘油氧化电催化的碱/酸混合电解制氢研究[J]. 电化学(中英文), 2023, 29(2): 2215005-. |
[5] | 孟庆成, 金林薄, 马梦泽, 高学庆, 陈爱兵, 周道金, 孙晓明. 层状金属氢氧化物中铁位点辅助分散铂纳米颗粒用于高效甲醇氧化[J]. 电化学(中英文), 2023, 29(2): 2215007-. |
[6] | 韦宗楠, 曹敏纳, 曹荣. 瓜环基金属纳米催化剂的电化学研究进展[J]. 电化学(中英文), 2023, 29(1): 2215008-. |
[7] | 郭鸿波, 王亚妮, 郭凯, 雷海涛, 梁作中, 张学鹏, 曹睿. 吸电子和亲水性Co-卟啉促进电催化氧还原反应的研究[J]. 电化学(中英文), 2022, 28(9): 2214002-. |
[8] | 梁宵, 张可新, 沈雨澄, 孙轲, 石磊, 陈辉, 郑克岩, 邹晓新. 钙钛矿型水氧化电催化剂[J]. 电化学(中英文), 2022, 28(9): 2214004-. |
[9] | 周澳, 郭伟健, 王月青, 张进涛. 焦耳热快速合成双功能电催化剂用于高效水分解[J]. 电化学(中英文), 2022, 28(9): 2214007-. |
[10] | 王英超, 马自在, 吴一凡, 王孝广. GCP载钯颗粒复合材料的制备及其电化学合成氨性能研究[J]. 电化学(中英文), 2022, 28(5): 2104091-. |
[11] | 张天恩, 颜雅妮, 张俊明, 瞿希铭, 黎燕荣, 姜艳霞. 调控Pt3Zn合金化程度改善酸性氧还原活性与稳定性[J]. 电化学(中英文), 2022, 28(4): 2106091-. |
[12] | Jafar Hussain Shah, 谢起贤, 匡智崇, 格日乐, 周雯慧, 刘朵绒, Alexandre I. Rykov, 李旭宁, 罗景山, 王军虎. 原位 57Fe穆斯堡尔光谱技术及其在Ni-Fe基析氧反应电催化剂中的应用[J]. 电化学(中英文), 2022, 28(3): 2108541-. |
[13] | 冯雅辰, 王翔, 王宇琪, 严会娟, 王栋. 电催化氧还原反应的原位表征[J]. 电化学(中英文), 2022, 28(3): 2108531-. |
[14] | 滕雪, 牛艳丽, 巩帅奇, 刘璇, 陈作锋. 碳层网络促进Sn/SnO2纳米颗粒选择性CO2还原[J]. 电化学(中英文), 2022, 28(2): 2108441-. |
[15] | 万紫轩, 王超辉, 康雄武. 泡沫铜支撑Ru掺杂Cu3P自支撑催化剂及其析氢性能[J]. 电化学(中英文), 2022, 28(10): 2214005-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||