电化学(中英文) ›› 2026, Vol. 32 ›› Issue (1): 2506261. doi: 10.61558/2993-074X.3578
收稿日期:2025-06-25
修回日期:2025-06-24
接受日期:2025-08-12
发布日期:2025-08-12
出版日期:2026-01-28
通讯作者:
王军虎
E-mail:wangjh@dicp.ac.cn
Sumbal Farida,b, Jun-Hu Wanga,b,*(
)
Received:2025-06-25
Revised:2025-06-24
Accepted:2025-08-12
Online:2025-08-12
Published:2026-01-28
Contact:
Jun-Hu Wang
E-mail:wangjh@dicp.ac.cn
摘要:
开发经济高效的氧还原反应(ORR)催化剂是一项重大挑战,尤其是在寻找铂等贵金属替代材料的研究中。近年来的显著进展推动电化学研究者利用储量丰富的材料开发高效ORR催化剂,其中铁(Fe)基材料因其优异的ORR催化性能而备受关注。尽管学界已认识到Fe在提升ORR催化活性中的关键作用,但材料属性与催化性能之间的关联仍尚不明确。对于设计无贵金属ORR电催化剂而言,理解氧电催化过程中的动态变化至关重要。穆斯堡尔谱(Mössbauer spectroscopy)在解析催化体系中Fe物种的结构特征方面具有独特优势,能够助力识别活性位点、阐明催化机理。本文通过综述领域内的典型研究案例,阐明了原位/工况57Fe 穆斯堡尔谱在各类铁基 ORR 催化材料中的应用,重点揭示了ORR催化的多个核心方面(如活性位点识别、稳定性评估、反应机理理解)。此外,本文还探讨了穆斯堡尔谱技术在该研究领域中的应用机遇与挑战,旨在揭示这一关键研究方向的潜在突破点与改进方向。
Sumbal Farid, 王军虎. 原位/工况穆斯堡尔谱视角下的铁基氧还原反应电催化剂[J]. 电化学(中英文), 2026, 32(1): 2506261.
Sumbal Farid, Jun-Hu Wang. Iron-Involved ORR Electrocatalysts under the Lens of In-Situ/Operando Mössbauer Spectroscopy[J]. Journal of Electrochemistry, 2026, 32(1): 2506261.
| # | ORR catalyst | Pyrolysis temperature | Atmosphere | Medium | Mössbauer | Attribution to ORR | Reference |
|---|---|---|---|---|---|---|---|
| 1 | FePc-C | 420 °C | He/H2 | 1 mol·L-1 NaOH, 0.5 mol·L-1 H2SO4 | In-situ | Small FePc crystallites | Scherson et al. 1982 |
| 2 | FeTPP-Cl/carbon | 325-800 °C | Ar | 0.5 mol·L-1 H2SO4 | In-situ | Only a fraction of Fe-N4 sites | Bouwkamp-Wijnoltz et al. 2002 |
| 3 | Fe-N-C | 950-1050 °C | Ar+NH3 | - | Ex-situ | FeN4/C, N-FeN2+2/C sites | Kramm et al. 2014 |
| 4 | Fe-N-C | 900-1050 °C | Ar, NH3 | 0.1 mol·L-1 H2SO4 | Ex-situ | Porphyrinic FeN4 | Zitolo et al. 2015 |
| 5 | Fe0.5-NC | 1050 °C | Ar | - | Ex-situ | Surface FeNx sites | Mineva et al. 2019 |
| 6 | Fe-NC, Fe-NC-S0.2, Fe-NC-S0.4, Fe-NC-S | 950 °C | N2 | 0.1 mol·L-1 KOH, 0.1 mol·L-1 HClO4 | Operando | N-FeN4C10 | Li et al. 2020 |
| 7 | FeNCphen, FeNCppy, FeNCporph | 800 °C | N2 | 0.1 mol·L-1 H2SO4 | In-situ | Two different Fe sites | Ni et al. 2021 |
| 8 | Fe-N-C | 950 °C | Ar | 0.5 mol·L-1 H2SO4 | In-situ | HS-FeN4C12, LS-FeN4C10 | Li et al. 2021 |
| 9 | Fe-N-C | 1050 °C | N2 | 0.1 mol·L-1 HClO4 | In-situ | FeN4C8, FeN4C12 | Xu et al. 2022 |
| 10 | Fe-N-C | 800 °C | N2 | 0.1 mol·L-1 H2SO4 | Operando | Pyrrolic FeN4 | Ni et al. 2022 |
| 11 | FeSnNC, FeCoNC | 900 °C | N2 | 0.1 mol·L-1 HClO4 | Ex-situ | Fe D1 site | Luo et al. 2023 |
| 12 | Fe-NxPy | 900 °C | N2 | 0.1 mol·L-1 KOH | Ex-situ | Fe-N3P1 | Liu et al. 2024 |
| [1] |
Qiu Z Y, Lv Y, Li Y P, Li G, Qin J, Yang M Y, Li J H, Chai C X, Li T T, Zhou Y W, Han S, Yang H, Liu Z Y, Wang D S, Zhai H R, Liu W, Wan P, Ge R L, Wang J H, Gao R, Song Y J. Porous ultrathin carbon nanoshells embedded with abundant Fe-N-C sites toward oxygen reduction reaction[J]. ACS Catal., 2025, 15(12): 10082-10091. https://doi.org/10.1021/acscatal.5c01071.
doi: 10.1021/acscatal.5c01071 URL |
| [2] |
Brea C, Hu G X. Dual-atom catalysts for the oxygen reduction reaction: Unraveling atomic structures under reaction conditions[J]. J. Am. Chem. Soc., 2025, 147(22): 19210-19216. https://doi.org/10.1021/jacs.5c04776.
doi: 10.1021/jacs.5c04776 URL |
| [3] |
Yin S, Yi H, Liu M, Yang J, Yang S, Zhang B W, Chen L, Cheng X, Huang H, Huang R, Jiang Y, Liao H, Sun S. An in situ exploration of how Fe/N/C oxygen reduction catalysts evolve during synthesis under pyrolytic conditions[J]. Nature Commun., 2024, 15(1): 6229. https://doi.org/10.1038/s41467-024-50629-x.
doi: 10.1038/s41467-024-50629-x URL |
| [4] | Muñoz-Becerra K, Venegas R, Duque L, Zagal J H, Recio F J. Recent advances of Fe-N-C pyrolyzed catalysts for the oxygen reduction reaction[J]. Curr. Opin. Electrochem., 2020, 23: 154-161. https://doi.org/10.1016/j.coelec.2020.08.006. |
| [5] |
Kumar K, Dubau L, Jaouen F, Maillard F. Review on the degradation mechanisms of metal-N-C catalysts for the oxygen reduction reaction in acid electrolyte: Current understanding and mitigation approaches[J]. Chem. Rev., 2023, 123(15): 9265-9326. https://doi.org/10.1021/acs.chemrev.2c00685.
doi: 10.1021/acs.chemrev.2c00685 URL |
| [6] |
Chen S M, Chen L K, Tian N, Hu S N, Yang S L, Shen J F, Tang J X, Wu D Y, Chen M S, Zhou Z Y, Sun S G. Double-shell confinement strategy enhancing durability of PtFeTi intermetallic catalysts for the oxygen reduction reaction[J]. ACS Catal., 2024, 14(22): 16664-16672. https://doi.org10.1021/acscatal.4c04779.
doi: 10.1021/acscatal.4c04779 URL |
| [7] |
Ku Y P, Ehelebe K, Hutzler A, Bierling M, Böhm T, Zitolo A, Vorokhta M, Bibent N, Speck F D, Seeberger D, Khalakhan I, Mayrhofer K J J, Thiele S, Jaouen F, Cherevko S. Oxygen reduction reaction in alkaline media causes iron leaching from Fe-N-C electrocatalysts[J]. J. Am. Chem. Soc., 2022, 144(22): 9753-9763. https://doi.org/10.1021/jacs.2c02088.
doi: 10.1021/jacs.2c02088 URL |
| [8] | Zhao K M, Wu D X, Wu W K, Nie J B, Geng F S, Li G, Shi H Y, Huang S C, Huang H, Zhang J, Zhou Z Y, Wang Y C, Sun S G. Identifying high-spin hydroxyl-coordinated Fe3+N4 as the active centre for acidic oxygen reduction using molecular model catalysts[J]. Nature Catal., 2025, 8(5): 422-435. https://doi.org/10.1038/s41929-025-01324-7. |
| [9] |
Holby E F, Wang G F, Zelenay P. Acid stability and demetalation of PGM-free ORR electrocatalyst structures from density functional theory: A model for “single-atom catalyst” dissolution[J]. ACS Catal., 2020, 10(24): 14527-14539. https://doi.org/10.1021/acscatal.0c02856.
doi: 10.1021/acscatal.0c02856 URL |
| [10] |
Bae G, Chung M W, Ji S G, Jaouen F, Choi C H. pH effect on the H2O2-induced deactivation of Fe-N-C catalysts[J]. ACS Catal., 2020, 10(15): 8485-8495. https://doi.org/10.1021/acscatal.0c00948.
doi: 10.1021/acscatal.0c00948 URL |
| [11] |
Suntivich J, May K J, Gasteiger H A, Goodenough J B, Shao-Horn Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles[J]. Science, 2011, 334(6061): 1383-1385. https://doi.org/10.1126/science.1212858.
doi: 10.1126/science.1212858 URL pmid: 22033519 |
| [12] | Wei C, Feng Z X, Scherer G G, Barber J, Shao-Horn Y, Xu Z J. Cations in octahedral sites: A descriptor for oxygen electrocatalysis on transition-metal spinels[J]. Adv. Mater., 2017, 29(23): 1606800. https://doi.org/10.1002/adma.201606800. |
| [13] | Ma L T, Chen S M, Wang D H, Yang Q, Mo F N, Liang G J, Li N, Zhang H Y, Zapien J A, Zhi C Y. Super-stretchable Zinc-air batteries based on an alkaline-tolerant dual-network hydrogel electrolyte[J]. Adv. Energy Mater., 2019, 9(12): 1803046. https://doi.org/10.1002/aenm.201803046. |
| [14] |
Chakrabarti A, Ford M E, Gregory D, Hu R R, Keturakis C J, Lwin S, Tang Y D, Yang Z, Zhu M H, Bañares M A, Wachs I E. A decade+ of operando spectroscopy studies[J]. Catal. Today, 2017, 283: 27-53. https://doi.org/10.1016/j.cattod.2016.12.012.
doi: 10.1016/j.cattod.2016.12.012 URL |
| [15] |
Gao L K, Cui X, Sewell C D, Li J, Lin Z Q. Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution reaction[J]. Chem. Soc. Rev., 2021, 50(15): 8428-8469. https://doi.org/10.1039/D0CS00962H.
doi: 10.1039/D0CS00962H URL |
| [16] | Zhao S L, Yang Y C, Tang Z Y. Insight into structural evolution, active sites, and stability of heterogeneous electrocatalysts[J]. Angew. Chem. Int. Ed., 2022, 61(11): e202110186. https://doi.org/10.1002/anie.202110186. |
| [17] | Liu X, Meng J S, Zhu J X, Huang M, Wen B, Guo R T, Mai L Q. Comprehensive understandings into complete reconstruction of precatalysts: Synthesis, applications, and characterizations[J]. Adv. Mater., 2021, 33(32): 2007344. https://doi.org/10.1002/adma.202007344. |
| [18] |
Hao Y M, Li Y F, Wu J X, Meng L S, Wang J L, Jia C L, Liu T, Yang X J, Liu Z P, Gong M. Recognition of surface oxygen intermediates on NiFe oxyhydroxide oxygen-evolving catalysts by homogeneous oxidation reactivity[J]. J. Am. Chem. Soc., 2021, 143(3): 1493-1502. https://doi.org/10.1021/jacs.0c11307.
doi: 10.1021/jacs.0c11307 URL pmid: 33439638 |
| [19] |
Anantharaj S, Kundu S, Noda S. “The Fe Effect”: A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts[J]. Nano Energy, 2021, 80: 105514. https://doi.org/10.1016/j.nanoen.2020.105514.
doi: 10.1016/j.nanoen.2020.105514 URL |
| [20] | Chen S M, Ma L T, Huang Z D, Liang G J, Zhi C Y. In situ/operando analysis of surface reconstruction of transition metal-based oxygen evolution electrocatalysts[J]. Cell Rep. Phys. Sci., 2022, 3(1): 100729. https://doi.org/10.1016/j.xcrp.2021.100729. |
| [21] | Bañares M A, Guerrero-Pérez M O, Fierro J L G, Cortez G G. Raman spectroscopy during catalytic operations with on-line activity measurement (operando spectroscopy): a method for understanding the active centres of cations supported on porous materials[J]. J. Mater. Chem., 2002, 12(11): 3337-3342. https://doi.org/10.1039/B204494C. |
| [22] |
Zhu Y P, Wang J L, Chu H, Chu Y C, Chen H M. In situ/operando studies for designing next-generation electrocatalysts[J]. ACS Energy Lett., 2020, 5(4): 1281-1291. https://doi.org/10.1021/acsenergylett.0c00305.
doi: 10.1021/acsenergylett.0c00305 URL |
| [23] | Cheng H W, Wang S, Chen G Y, Liu Z W, Caracciolo D, Madiou M, Shan S Y, Zhang J C, He H Y, Che R C, Zhong C J. Insights into heterogeneous catalysts under reaction conditions by in situ/operando electron microscopy[J]. Adv. Energy Mater., 2022, 12(38): 2202097. https://doi.org/10.1002/aenm.202202097. |
| [24] | Lippens P E, Jumas J C, Olivier-Fourcade J. Application of Mössbauer spectroscopy to energy materials[M]////Mössbauer spectroscopy: Applications in chemistry and materials science. Editor(s): Garcia Y, Wang J H, Zhang T. Wiley-VCH, 2023: 1-32. https://doi.org/10.1002/9783527824953. |
| [25] |
Akbari N, Shah J H, Hu C, Nandy S, Aleshkevych P, Ge R, Farid S, Dong C, Zhang L, Chae K H, Xie W, Liu T, Wang J, Najafpour M M. A hypothesis on the function of high-valent Fe in NiFe (hydr)oxide in the oxygen-evolution reaction[J]. Angew. Chem Int. Ed., 2025, 64(6): e202418798. https://doi.org/10.1002/anie.202418798.
doi: 10.1002/anie.202421871 URL pmid: 39578966 |
| [26] |
Li X N, Zhu K Y, Pang J F, Tian M, Liu J Y, Rykov A I, Zheng M Y, Wang X D, Zhu X F, Huang Y Q, Liu B, Wang J H, Yang W S, Zhang T. Unique role of Mössbauer spectroscopy in assessing structural features of heterogeneous catalysts[J]. Appl. Catal. B. Environ., 2018, 224: 518-532. https://doi.org/10.1016/j.apcatb.2017.11.004.
doi: 10.1016/j.apcatb.2017.11.004 URL |
| [27] |
Liu P J, Farid S, Liu M, Wang J H. In-situ/operando Mössbauer spectroscopic investigations of Fe-involved metal hydroxide-based OER electrocatalysts[J]. Catal. Surv. Asia., 2024, 28(4): 361-374. https://doi.org/10.1007/s10563-024-09432-3.
doi: 10.1007/s10563-024-09432-3 URL |
| [28] |
Liu T, Huang H, Xu A R, Sun Z G, Liu D, Jiang S W, Xu L, Chen Y D, Liu X K, Luo Q Q, Ding T, Yao T. Manipulation of d-orbital electron configurations in nonplanar Fe-based electrocatalysts for efficient oxygen reduction[J]. ACS Nano, 2024, 18(41): 28433-28443. https://doi.org/10.1021/acsnano.4c11356.
doi: 10.1021/acsnano.4c11356 URL pmid: 39365637 |
| [29] |
Guo X M, Shi J, Li M, Zhang J H, Zheng X J, Liu Y J, Xi B J, An X G, Duan Z Y, Fan Q Q, Gao F, Xiong S L. Modulating coordination of iron atom clusters on N,P,S triply-doped hollow carbon support towards enhanced electrocatalytic oxygen reduction[J]. Angew. Chem. Int. Ed., 2023, 62(49): e202314124. https://doi.org/10.1002/anie.202314124.
doi: 10.1002/anie.202311264 URL pmid: 37878997 |
| [30] |
Liu L D, Li W T, He X B, Yang J, Liu N. In situ/operando insights into the stability and degradation mechanisms of heterogeneous electrocatalysts[J]. Small, 2022, 18(7): 2104205. https://doi.org/10.1002/smll.202104205.
doi: 10.1002/smll.v18.7 URL |
| [31] |
Lefèvre M, Proietti E, Jaouen F, Dodelet J P. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells[J]. Science, 2009, 324(5923): 71-74. https://doi.org/10.1126/science.1170051.
doi: 10.1126/science.1170051 URL pmid: 19342583 |
| [32] |
Jasinski R. A new fuel cell cathode catalyst[J]. Nature, 1964, 201(4925): 1212-1213. https://doi.org/10.1038/2011212a0.
doi: 10.1038/2011212a0 URL |
| [33] |
Jahnke H, Schönborn M, Zimmermann G. Organic dyestuffs as catalysts for fuel cells[J]. Top. Curr. Chem., 1976, 61: 133-181. https://doi.org/10.1007/BFb0046059.
URL pmid: 7032 |
| [34] |
Gupta S, Tryk D, Bae I, Aldred W, Yeager E. Heat-treated polyacrylonitrile-based catalysts for oxygen electroreduction[J]. J. Appl. Electrochem., 1989, 19(1): 19-27. https://doi.org/10.1007/BF01039385.
doi: 10.1007/BF01039385 URL |
| [35] |
Wang W, Jia Q Y, Mukerjee S, Chen S L. Recent insights into the oxygen reduction electrocatalysis of Fe/N/C materials[J]. ACS Catal., 2019, 9(11): 10126-10141. https://doi.org/10.1021/acscatal.9b02583.
doi: 10.1021/acscatal.9b02583 URL |
| [36] |
Levell Z, Yu S, Wang R Y, Liu Y Y. What is the "other" site in M-N-C?[J]. J. Am. Chem. Soc., 2025, 147(1): 603-609. https://doi.org/10.1021/jacs.4c12479.
doi: 10.1021/jacs.4c12479 URL pmid: 39707967 |
| [37] |
Zhao J Y, Lian J, Zhao Z X, Wang X M, Zhang J J. A review of in-situ techniques for probing active sites and mechanisms of electrocatalytic oxygen reduction reactions[J]. Nano-Micro Lett., 2022, 15(1): 19. https://doi.org/10.1007/s40820-022-00984-5.
doi: 10.1007/s40820-022-00984-5 URL pmid: 36580130 |
| [38] |
Tang M, Zou Y, Jiang Z, Ma P, Zhou Z, Zhu X, Bao J, Sun S G. Healing the structural defects of spinel MnFe2O4 to enhance the electrocatalytic activity for oxygen reduction reaction[J]. J. Energy Chem., 2024, 97: 12-19. https://doi.org/10.1016/j.jechem.2024.05.039.
doi: 10.1016/j.jechem.2024.05.039 URL |
| [39] |
Dessalle A, Quílez-Bermejo J, Fierro V, Xu F N, Celzard A. Recent progress in the development of efficient biomass-based ORR electrocatalysts[J]. Carbon, 2023, 203: 237-260. https://doi.org/10.1016/j.carbon.2022.11.073.
doi: 10.1016/j.carbon.2022.11.073 URL |
| [40] |
Kramm U I, Ni L, Wagner S. 57Fe Mössbauer spectroscopy characterization of electrocatalysts[J]. Adv. Mater., 2019, 31(31): 1805623. https://doi.org/10.1002/adma.201805623.
doi: 10.1002/adma.v31.31 URL |
| [41] | Huang Z F, Wang J, Peng Y C, Jung C Y, Fisher A, Wang X. Design of efficient bifunctional oxygen reduction/evolution electrocatalyst: Recent advances and perspectives[J]. Adv. Energy Mater., 2017, 7(23): 1700544. https://doi.org/10.1002/aenm.201700544. |
| [42] | Wang J, Zhao C X, Liu J N, Ren D, Li B Q, Huang J Q, Zhang Q. Quantitative kinetic analysis on oxygen reduction reaction: A perspective[J]. Nano Mater. Sci., 2021, 3(3): 313-318. https://doi.org/10.1016/j.nanoms.2021.03.006. |
| [43] |
Wang Y C, Huang L, Zhang P, Qiu Y T, Sheng T, Zhou Z Y, Wang G, Liu J G, Rauf M, Gu Z Q, Wu W T, Sun S G. Constructing a triple-phase interface in micropores to boost performance of Fe/N/C catalysts for direct methanol fuel cells[J]. ACS Energy Lett., 2017, 2(3): 645-650. https://doi.org/10.1021/acsenergylett.7b00071.
doi: 10.1021/acsenergylett.7b00071 URL |
| [44] |
Chenitz R, Kramm U I, Lefèvre M, Glibin V, Zhang G X, Sun S H, Dodelet J P. A specific demetallation of Fe-N4 catalytic sites in the micropores of NC-Ar + NH3 is at the origin of the initial activity loss of the highly active Fe/N/C catalyst used for the reduction of oxygen in PEM fuel cells[J]. Energy Environ. Sci., 2018, 11(2): 365-382. https://doi.org/10.1039/C7EE02302B.
doi: 10.1039/C7EE02302B URL |
| [45] |
Xu X L, Zhang X M, Kuang Z C, Xia Z X, Rykov A I, Yu S S, Wang J H, Wang S L, Sun G Q. Investigation on the demetallation of Fe-N-C for oxygen reduction reaction: The influence of structure and structural evolution of active site[J]. Appl. Catal. B. Environ., 2022, 309: 121290. https://doi.org/10.1016/j.apcatb.2022.121290.
doi: 10.1016/j.apcatb.2022.121290 URL |
| [46] |
Jiao L, Li J K, Richard L L, Sun Q, Stracensky T, Liu E, Sougrati M T, Zhao Z P, Yang F, Zhong S C, Xu H, Mukerjee S, Huang Y, Cullen D A, Park J H, Ferrandon M, Myers D J, Jaouen F, Jia Q Y. Chemical vapour deposition of Fe-N-C oxygen reduction catalysts with full utilization of dense Fe-N4 sites[J]. Nat. Mater., 2021, 20(10): 1385-1391. https://doi.org/10.1038/s41563-021-01030-2.
doi: 10.1038/s41563-021-01030-2 URL pmid: 34112977 |
| [47] |
Gao Y Y, Hou M, Qi M M, He L, Chen H P, Luo W Z, Shao Z G. New insight into effect of potential on degradation of Fe-N-C catalyst for ORR[J]. Front. Energy, 2021, 15(2): 421-430. https://doi.org/10.1007/s11708-021-0727-2.
doi: 10.1007/s11708-021-0727-2 URL |
| [48] |
Kumar K, Dubau L, Mermoux M, Li J K, Zitolo A, Nelayah J, Jaouen F, Maillard F. On the influence of oxygen on the degradation of Fe-N-C catalysts[J]. Angew. Chem. Int. Ed., 2020, 59(8): 3235-3243. https://doi.org/10.1002/anie.201912451.
doi: 10.1002/anie.201912451 URL pmid: 31799800 |
| [49] | Santori P G, Speck F D, Li J, Zitolo A, Jia Q Y, Mukerjee S, Cherevko S, Jaouen F. Effect of pyrolysis atmosphere and electrolyte pH on the oxygen reduction activity, stability and spectroscopic signature of FeNx moieties in Fe-N-C catalysts[J]. J. Electrochem. Soc., 2019, 166(7): F3311. https://doi.org/10.1149/2.0371907jes. |
| [50] | Goellner V, Baldizzone C, Schuppert A, Sougrati M T, Mayrhofer K, Jaouen F. Degradation of Fe/N/C catalysts upon high polarization in acid medium[J]. Phys. Chem. Chem. Phy., 2014, 16(34): 18454-18462. https://doi.org/10.1039/C4CP02882A. |
| [51] |
Xu X L, Zhang X M, Xia Z X, Sun R L, Wang J H, Jiang Q K, Yu S S, Wang S L, Sun G Q. Fe-N-C with intensified exposure of active sites for highly efficient and stable direct methanol fuel cells[J]. ACS Appl. Mater. Interfaces, 2021, 13(14): 16279-16288. https://doi.org/10.1021/acsami.0c22968.
doi: 10.1021/acsami.0c22968 URL |
| [52] | Zeng Y Q, Li X N, Wang J H, Sougrati M T, Huang Y Q, Zhang T, Liu B. In situ/operando Mössbauer spectroscopy for probing heterogeneous catalysis[J]. Chem Catal., 2021, 1(6): 1215-1233. https://doi.org/10.1016/j.checat.2021.08.013. |
| [53] | Gütlich P, Bill E, Trautwein A X. Mössbauer spectroscopy and transition metal chemistry[M]. Springer Berlin, Heidelberg, 2011. https://doi.org/10.1007/978-3-540-88428-6. |
| [54] | Liu K, Rykov A I, Wang J, Zhang T. Recent advances in the application of Mössbauer spectroscopy in heterogeneous catalysis[J]. Adv. Catal., 2015, 58: 1-142. https://doi.org/10.1016/bs.acat.2015.09.001. |
| [55] | Scott R A, Lukehart C M. Application of physical methods to inorganic and bioinorganic chemistry[M]. Wiley & Sons Ltd, 2007. www.mrw.interscience.wiley.com/EIC/. |
| [56] | Joseyphus R J, Greneche J M. Fundamentals of 57Fe Mössbauer spectrometry[M]. Springer Singapore, 2024. https://doi.org/10.1007/978-981-99-8653-8. |
| [57] | Mossbauer Effect Data Center[EB/OL]. http://www.medc.dicp.ac.cn. |
| [58] |
Mineva T, Matanovic I, Atanassov P, Sougrati M T, Stievano L, Clémancey M, Kochem A, Latour J M, Jaouen F. Understanding active sites in pyrolyzed Fe-N-C catalysts for fuel cell cathodes by bridging density functional theory calculations and 57Fe Mössbauer spectroscopy[J]. ACS Catal., 2019, 9(10): 9359-9371. https://doi.org/10.1021/acscatal.9b02586.
doi: 10.1021/acscatal.9b02586 URL |
| [59] |
Sougrati M T, Goellner V, Schuppert A K, Stievano L, Jaouen F. Probing active sites in iron-based catalysts for oxygen electro-reduction: A temperature-dependent 57Fe Mössbauer spectroscopy study[J]. Catal. Today, 2016, 262: 110-120. https://doi.org/10.1016/j.cattod.2015.10.017.
doi: 10.1016/j.cattod.2015.10.017 URL |
| [60] |
Gallenkamp C, Kramm U I, Proppe J, Krewald V. Calibration of computational Mössbauer spectroscopy to unravel active sites in FeNC catalysts for the oxygen reduction reaction[J]. International J. Quantum Chem., 2021, 121(3): e26394. https://doi.org/10.1002/qua.26394.
doi: 10.1002/qua.v121.3 URL |
| [61] |
Bouwkamp-Wijnoltz A L, Visscher W, van Veen J A R, Boellaard E, van der Kraan A M, Tang S C. On active-site heterogeneity in pyrolyzed carbon-supported iron porphyrin catalysts for the electrochemical reduction of oxygen: An in situ Mössbauer study[J]. J. Phys. Chem. B, 2002, 106(50): 12993-13001. https://doi.org/10.1021/jp0266087.
doi: 10.1021/jp0266087 URL |
| [62] | Shah J, Xie Q X, Kuang Z C, Ge R L, Zhou W H, Liu D R, Rykov A, Li X N, Luo J S, Wang J. In-situ/operando 57Fe Mössbauer spectroscopic technique and its applications in NiFe-based electrocatalysts for oxygen evolution reaction[J]. J. Electrochem., 2022: 2108541. https://doi.org/10.13208/j.electrochem.210854. |
| [63] |
Scherson D A, Fierro C, Yeager E B, Kordesch M E, Eldridge J, Hoffman R W, Barnes A. In situ Mössbauer spectroscopy on an operating fuel cell[J]. J. Electroanal. Chem. Interfacial Electrochem., 1984, 169(1): 287-302. https://doi.org/10.1016/0022-0728(84)80090-X.
doi: 10.1016/0022-0728(84)80090-X URL |
| [64] |
Chen Z, Jiang S, Kang G, Nguyen D, Schatz G C, Van Duyne R P. Operando characterization of iron phthalocyanine deactivation during oxygen reduction reaction using electrochemical tip-enhanced Raman spectroscopy[J]. J. Am. Chem. Soc., 2019, 141(39): 15684-15692. https://doi.org/10.1021/jacs.9b07979.
doi: 10.1021/jacs.9b07979 URL pmid: 31503482 |
| [65] |
Zhang H G, Chung H T, Cullen D A, Wagner S, Kramm U I, More K L, Zelenay P, Wu G. High-performance fuel cell cathodes exclusively containing atomically dispersed iron active sites[J]. Energy Environ. Sci., 2019, 12(8): 2548-2558. https://doi.org/10.1039/C9EE00877B.
doi: 10.1039/C9EE00877B URL |
| [66] |
Zitolo A, Goellner V, Armel V, Sougrati M T, Mineva T, Stievano L, Fonda E, Jaouen F. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials[J]. Nat. Mater., 2015, 14(9): 937-942. https://doi.org/10.1038/nmat4367.
doi: 10.1038/nmat4367 URL |
| [67] |
Scherson D A, Yao S B, Yeager E B, Eldridge J, Kordesch M E, Hoffman R W. In situ and ex situ Mossbauer spectroscopy studies of iron phthalocyanine adsorbed on high surface area carbon[J]. J. Phys. Chem., 1983, 87(6): 932-943. https://doi.org/10.1021/j100229a008.
doi: 10.1021/j100229a008 URL |
| [68] |
Kramm U I, Herranz J, Larouche N, Arruda T M, Lefèvre M, Jaouen F, Bogdanoff P, Fiechter S, Abs-Wurmbach I, Mukerjee S, Dodelet J P. Structure of the catalytic sites in Fe/N/C-catalysts for O2-reduction in PEM fuel cells[J]. Phys. Chem. Chem. Phys., 2012, 14(33): 11673-11688. https://doi.org/10.1039/c2cp41957b.
doi: 10.1039/c2cp41957b URL pmid: 22824866 |
| [69] |
Kramm U I, Lefèvre M, Larouche N, Schmeisser D, Dodelet J-P. Correlations between mass activity and physicochemical properties of Fe/N/C catalysts for the ORR in PEM fuel cell via 57Fe Mössbauer spectroscopy and other techniques[J]. J. Am. Chem. Soc., 2014, 136(3): 978-985. https://doi.org/10.1021/ja410076f.
doi: 10.1021/ja410076f URL |
| [70] |
Koslowski U I, Abs-Wurmbach I, Fiechter S, Bogdanoff P. Nature of the catalytic centers of porphyrin-based electrocatalysts for the ORR: a correlation of kinetic current density with the site density of Fe-N4 centers[J]. J. Phys. Chem. C, 2008, 112(39): 15356-15366. https://doi.org/10.1021/jp802456e.
doi: 10.1021/jp802456e URL |
| [71] |
Zhu Y S, Zhang B S, Liu X, Wang D W, Su D S. Unravelling the structure of electrocatalytically active Fe-N complexes in carbon for the oxygen reduction reaction[J]. Angew. Chem. Int. Ed., 2014, 53(40): 10673-10677. https://doi.org/10.1002/anie.201405314.
doi: 10.1002/anie.201405314 URL pmid: 25115803 |
| [72] |
Strickland K, Miner E, Jia Q Y, Tylus U, Ramaswamy N, Liang W T, Sougrati M T, Jaouen F, Mukerjee S. Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal-nitrogen coordination[J]. Nat. Commun., 2015, 6(1): 7343. https://doi.org/10.1038/ncomms8343.
doi: 10.1038/ncomms8343 URL |
| [73] |
Liu K X, Wu G, Wang G F. Role of local carbon structure surrounding FeN4 sites in boosting the catalytic activity for oxygen reduction[J]. J. Phys. Chem. C, 2017, 121(21): 11319-11324. https://doi.org/10.1021/acs.jpcc.7b00913.
doi: 10.1021/acs.jpcc.7b00913 URL |
| [74] | Ni L M, Gallenkamp C, Paul S, Kübler M, Theis P, Chabbra S, Hofmann K, Bill E, Schnegg A, Albert B, Krewald V, Kramm U I. Active site identification in FeNC catalysts and their assignment to the oxygen reduction reaction pathway by in situ 57Fe Mössbauer spectroscopy[J]. Adv. Energy Sustain. Res., 2021, 2(2): 2000064. https://doi.org/10.1002/aesr.202000064. |
| [75] |
Ni L M, Gallenkamp C, Wagner S, Bill E, Krewald V, Kramm U I. Identification of the catalytically dominant iron environment in iron- and nitrogen-doped carbon catalysts for the oxygen reduction reaction[J]. J. Am. Chem. Soc., 2022, 144(37): 16827-16840. https://doi.org/10.1021/jacs.2c04865.
doi: 10.1021/jacs.2c04865 URL |
| [76] |
Li X N, Cao C S, Hung S F, Lu Y R, Cai W Z, Rykov A I, Miao S, Xi S B, Yang H B, Hu Z H, Wang J H, Zhao J Y, Alp E E, Xu W, Chan T S, Chen H M, Xiong Q H, Xiao H, Huang Y Q, Li J, Zhang T, Liu B. Identification of the electronic and structural dynamics of catalytic centers in single-Fe-atom material[J]. Chem, 2020, 6(12): 3440-3454. https://doi.org/10.1016/j.chempr.2020.10.027.
doi: 10.1016/j.chempr.2020.10.027 URL |
| [77] |
Luo F, Roy A, Sougrati M T, Khan A, Cullen D A, Wang X, Primbs M, Zitolo A, Jaouen F, Strasser P. Structural and reactivity effects of secondary metal doping into iron-nitrogen-carbon catalysts for oxygen electroreduction[J]. J. Am. Chem. Soc., 2023, 145(27): 14737-14747. https://doi.org/10.1021/jacs.3c03033.
doi: 10.1021/jacs.3c03033 URL |
| [78] |
Li J K, Sougrati M T, Zitolo A, Ablett J M, Oğuz I C, Mineva T, Matanovic I, Atanassov P, Huang Y, Zenyuk I, Di Cicco A, Kumar K, Dubau L, Maillard F, Dražić G, Jaouen F. Identification of durable and non-durable FeNx sites in Fe-N-C materials for proton exchange membrane fuel cells[J]. Nat. Catal., 2021, 4(1): 10-29. https://doi.org/10.1038/s41929-020-00545-2.
doi: 10.1038/s41929-020-00545-2 URL |
| [79] |
Yan Y, Cheng H Y, Qu Z H, Yu R, Liu F, Ma Q W, Zhao S, Hu H, Cheng Y, Yang C Y, Li Z F, Wang X, Hao S Y, Chen Y Y, Liu M K. Recent progress on the synthesis and oxygen reduction applications of Fe-based single-atom and double-atom catalysts[J]. J. Mater. Chem. A, 2021, 9(35): 19489-19507. https://doi.org/10.1039/D1TA02769G.
doi: 10.1039/D1TA02769G URL |
| [80] |
Yuan K, Lützenkirchen-Hecht D, Li L B, Shuai L, Li Y Z, Cao R, Qiu M, Zhuang X D, Leung M K H, Chen Y Y, Scherf U. Boosting oxygen reduction of single iron active sites via geometric and electronic engineering: Nitrogen and phosphorus dual coordination[J]. J. Am. Chem. Soc., 2020, 142(5): 2404-2412. https://doi.org/10.1021/jacs.9b11852.
doi: 10.1021/jacs.9b11852 URL pmid: 31902210 |
| [81] | Jia Q Y, Liu E, Jiao L, Pann S, Mukerjee S. X-Ray absorption spectroscopy characterizations on PGM-free electrocatalysts: Justification, advantages, and limitations[J]. Adv. Mater., 2019, 31(31): 1805157. https://doi.org/10.1002/adma.201805157. |
| [82] | Kreider M E, Burke Stevens M. Material changes in electrocatalysis: An in Situ/operando focus on the dynamics of cobalt-based oxygen reduction and evolution catalysts[J]. ChemElectroChem, 2023, 10(3): e202200958. https://doi.org/10.1002/celc.202200958. |
| [83] |
Choi C H, Baldizzone C, Polymeros G, Pizzutilo E, Kasian O, Schuppert A K, Ranjbar Sahraie N, Sougrati M-T, Mayrhofer K J J, Jaouen F. Minimizing operando demetallation of Fe-N-C electrocatalysts in acidic medium[J]. ACS Catal., 2016, 6(5): 3136-3146. https://doi.org/10.1021/acscatal.6b00643.
doi: 10.1021/acscatal.6b00643 URL |
| [84] |
Lefèvre M, Dodelet J-P. Fe-based catalysts for the reduction of oxygen in polymer electrolyte membrane fuel cell conditions: determination of the amount of peroxide released during electroreduction and its influence on the stability of the catalysts[J]. Electrochim. Acta., 2003, 48(19): 2749-2760. https://doi.org/10.1016/S0013-4686(03)00393-1.
doi: 10.1016/S0013-4686(03)00393-1 URL |
| [85] |
Choi C H, Lim H K, Chung M W, Chon G, Ranjbar Sahraie N, Altin A, Sougrati M-T, Stievano L, Oh H S, Park E S, Luo F, Strasser P, Dražić G, Mayrhofer K J J, Kim H, Jaouen F. The Achilles' heel of iron-based catalysts during oxygen reduction in an acidic medium[J]. Energy Environ. Sci., 2018, 11(11): 3176-3182. https://doi.org/10.1039/C8EE01855C.
doi: 10.1039/C8EE01855C URL |
| [86] |
Kumar K, Gairola P, Lions M, Ranjbar-Sahraie N, Mermoux M, Dubau L, Zitolo A, Jaouen F, Maillard F. Physical and chemical considerations for improving catalytic activity and stability of non-precious-metal oxygen reduction reaction catalysts[J]. ACS Catal., 2018, 8(12): 11264-11276. https://doi.org/10.1021/acscatal.8b02934.
doi: 10.1021/acscatal.8b02934 URL |
| [87] |
Choi C H, Baldizzone C, Grote J-P, Schuppert A K, Jaouen F, Mayrhofer K J J. Stability of Fe-N-C catalysts in acidic medium studied by operando spectroscopy[J]. Angew. Chem. Int. Ed., 2015, 54(43): 12753-12757. https://doi.org/10.1002/anie.201504903.
doi: 10.1002/anie.201504903 URL pmid: 26314711 |
| [88] | Herranz J, Jaouen F, Lefèvre M, Kramm U I, Proietti E, Dodelet J P, Bogdanoff P, Fiechter S, Abs-Wurmbach I, Bertrand P, Arruda T M, Mukerjee S. Unveiling N-protonation and anion-binding effects on Fe/N/C-catalysts for O2 reduction in PEM fuel cells[J]. J. Phys. Chem. C, 2011, 115(32): 2042526. https://doi.org/10.1021/jp2042526. |
| [89] |
Mamtani K, Singh D, Tian J, Millet J M, Miller J T, Co A C, Ozkan U S. Evolution of N-coordinated iron-carbon (FeNC) catalysts and their oxygen reduction (ORR) performance in acidic media at various stages of catalyst synthesis: An attempt at benchmarking[J]. Catal. Lett., 2016, 146(9): 1749-1770. https://doi.org/10.1007/s10562-016-1800-z.
doi: 10.1007/s10562-016-1800-z URL |
| [90] |
Kramm U I, Lefèvre M, Bogdanoff P, Schmeisser D, Dodelet J P. Analyzing structural changes of Fe-N-C cathode catalysts in PEM fuel cell by Mössbauer spectroscopy of complete membrane electrode assemblies[J]. J. Phys. Chem. Lett., 2014, 5(21): 3750-3756. https://doi.org/10.1021/jz501955g.
doi: 10.1021/jz501955g URL |
| [91] |
Bae G, Kim M M, Han M H, Cho J, Kim D H, Sougrati M T, Kim J, Lee K S, Joo S H, Goddard W A, Oh H S, Kim H, Jaouen F, Choi C H. Unravelling the complex causality behind Fe-N-C degradation in fuel cells[J]. Nat. Catal., 2023, 6(12): 1140-1150. https://doi.org/10.1038/s41929-023-01039-7.
doi: 10.1038/s41929-023-01039-7 URL |
| [1] | 丰紫薇, 陈海忠, 段骁, 唐玲, 赵云昆, 黄龙. 碳载铂镍八面体纳米粒子作为质子交换膜燃料电池阴极催化剂的性能研究[J]. 电化学(中英文), 2026, 32(1): 2515009-. |
| [2] | 刘育荣, 张淼, 于彦会, 刘亚琳, 李静, 史晓东, 康振烨, 吴道雄, 饶鹏, 梁颖, 田新龙. 局域电场耦合Cl−固定策略提升海水氧还原反应性能[J]. 电化学(中英文), 2025, 31(9): 2504132-. |
| [3] | 兰畅, 柏景森, 关欣, 王烁, 张楠淑, 程雨晴, 陶金晶, 楚宇逸, 肖梅玲, 刘长鹏, 邢巍. 协同硼掺杂显著提升Co-N-C催化剂的氧还原反应活性[J]. 电化学(中英文), 2025, 31(9): 2506181-. |
| [4] | 张辰浩, 胡晗宇, 杨竣皓, 张倩, 杨畅, 王得丽. Pt2NiCo金属间化合物的有序度调控及电催化氧还原反应性能研究[J]. 电化学(中英文), 2025, 31(4): 2411281-. |
| [5] | 何佩佩, 师锦华, 李笑语, 刘明杰, 方舟, 和晶, 李中坚, 彭新生, 和庆钢. 碳纳米管穿插钴基卟啉金属有机框架催化ORR[J]. 电化学(中英文), 2025, 31(1): 2405241-. |
| [6] | 郑天龙, 欧明玉, 徐松, 毛信表, 王释一, 和庆钢. 一体式可再生燃料电池双功能氧催化剂的研究进展[J]. 电化学(中英文), 2023, 29(7): 2205301-. |
| [7] | 刘思淼, 周景娇, 季世军, 文钟晟. FeNi-CoP/NC双功能催化剂的制备及电催化性能研究[J]. 电化学(中英文), 2023, 29(10): 211118-. |
| [8] | 郭鸿波, 王亚妮, 郭凯, 雷海涛, 梁作中, 张学鹏, 曹睿. 吸电子和亲水性Co-卟啉促进电催化氧还原反应的研究[J]. 电化学(中英文), 2022, 28(9): 2214002-. |
| [9] | 张天恩, 颜雅妮, 张俊明, 瞿希铭, 黎燕荣, 姜艳霞. 调控Pt3Zn合金化程度改善酸性氧还原活性与稳定性[J]. 电化学(中英文), 2022, 28(4): 2106091-. |
| [10] | 冯雅辰, 王翔, 王宇琪, 严会娟, 王栋. 电催化氧还原反应的原位表征[J]. 电化学(中英文), 2022, 28(3): 2108531-. |
| [11] | 袁会芳, 张越, 翟兴吾, 胡立兵, 葛桂贤, 王刚, 于锋, 代斌. 氮掺杂碳原位锚定铜纳米颗粒用于高效氧还原反应催化剂[J]. 电化学(中英文), 2021, 27(6): 671-680. |
| [12] | 林华, 吴艺津, 李君涛, 周尧. 一锅法制备Fe2O3@Fe-N-C氧还原电催化剂及其锌-空气电池的性能研究[J]. 电化学(中英文), 2021, 27(4): 366-376. |
| [13] | 李文杰, 田东旭, 杜红, 燕希强. ORR催化剂Nim@Pt1Aun-m-1 (n = 19, 38, 55, 79; m = 1, 6, 13, 19)的密度泛函研究[J]. 电化学(中英文), 2021, 27(4): 357-365. |
| [14] | 张丙凯, 杨卢奕, 李舜宁, 潘锋. 固态电解质中锂离子传输机理研究进展[J]. 电化学(中英文), 2021, 27(3): 269-277. |
| [15] | 吴志鹏, 钟传建. 钯基氧还原和乙醇氧化反应电催化剂:关于结构和机理研究的一些近期见解[J]. 电化学(中英文), 2021, 27(2): 144-156. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||