[1] |
Wei Z Z, Zhang N X, Wu F, Chen R J. Progress and prospects on multifunctional coating separators for lithium-sulfur battery[J]. J. Electrochem., 2020, 26(5): 716-730.
|
[2] |
Lin J X, Qu X M, Wu X H, Peng J, Zhou S Y, Li J T, Zhou Y, Mo Y X, Ding M J, Huang L, Sun S G. NiCo2O4/CNF separator modifiers for trapping and catalyzing polysulfides for high-performance lithium-sulfur batteries with high sulfur loadings and lean electrolytes[J]. ACS Sustainable Chem. Eng., 2021, 9(4): 1804-1813.
doi: 10.1021/acssuschemeng.0c08049
URL
|
[3] |
Wu F, Ye Y S, Chen R J, Qian J, Zhao T, Li L, Li W H. Systematic effect for an ultralong cycle lithium-sulfur battery[J]. Nano Lett., 2015, 15(11): 7431-7439.
doi: 10.1021/acs.nanolett.5b02864
pmid: 26502268
|
[4] |
Wu F, Qian J, Chen R J, Ye Y S, Sun Z G, Xing Y, Li L. Light-weight functional layer on a separator as a polysulfide immobilizer to enhance cycling stability for lithium-sulfur batteries[J]. J. Mater. Chem. A, 2016, 4(43): 17033-17041.
doi: 10.1039/C6TA06516C
URL
|
[5] |
Ye Z Q, Jiang Y, Feng T, Wang Z H, Li L, Wu F, Chen R J. Curbing polysulfide shuttling by synergistic engineering layer composed of supported Sn4P3 nanodots electrocatalyst in lithium-sulfur batteries[J]. Nano Energy, 2020, 70: 104532.
doi: 10.1016/j.nanoen.2020.104532
URL
|
[6] |
Wei L, Li W L, Zhao T, Zhang N X, Li L, Wu F, Chen R J. Cobalt nanoparticles shielded in N-doped carbon nanotubes for high areal capacity Li-S batteries[J]. Chem. Commun., 2020, 56(20): 3007-3010.
doi: 10.1039/C9CC08218B
URL
|
[7] |
Yao W Q, Tian C X, Yang C, Xu J, Meng Y F, Manke I, Chen N, Wu Z L, Zhan L, Wang Y L, Chen R J. P-doped NiTe2 with Te-vacancies in lithium-sulfur batteries prevents shuttling and promotes polysulfide conversion[J]. Adv. Mater., 2022, 34(11): 2106370.
doi: 10.1002/adma.v34.11
URL
|
[8] |
Li Z, Zhang F, Cao T, Tang L B, Xu Q J, Liu H M, Wang Y G. Highly stable lithium-sulfur batteries achieved by a SnS/porous carbon nanosheet architecture modified celgard separator[J]. Adv. Funct. Mater., 2020, 30(48): 2006297.
doi: 10.1002/adfm.v30.48
URL
|
[9] |
Zuo Y Z, Zhu Y J, Tang X S, Zhao M, Ren P J, Su W M, Tang Y F, Chen Y F. MnO2 supported on acrylic cloth as functional separator for high-performance lithium-sulfur batteries[J]. J. Power Sources, 2020, 464: 228181.
doi: 10.1016/j.jpowsour.2020.228181
URL
|
[10] |
Kim S, Lim W G, Cho A, Jeong J, Jo C, Kang D G, Han S M, Han J W, Lee J. Simultaneous suppression of shuttle effect and Li dendrite growth by light-weight bifunctional separator for Li-S batteries[J]. ACS Appl. Energy Mater., 2020, 3(3): 2643-2652.
doi: 10.1021/acsaem.9b02350
URL
|
[11] |
Li W L, Qian J, Zhao T, Ye Y S, Xing Y, Huang Y X, Wei L, Zhang N X, Chen N, Li L, Wu F, Chen R J. Boosting high-rate Li-S Batteries by an MOF-derived catalytic electrode with a layer-by-layer structure[J]. Adv. Sci., 2019, 6(16): 1802362.
doi: 10.1002/advs.v6.16
URL
|
[12] |
Ye Z Q, Jiang Y, Li L, Wu F, Chen R J. Enhanced catalytic conversion of polysulfide using 1D CoTe and 2D MXene for heat-resistant and lean-electrolyte Li-S batteries[J]. Chem. Eng. J., 2022, 430: 132734.
doi: 10.1016/j.cej.2021.132734
URL
|
[13] |
Liu Y T, Liu S, Li G R, Gao X P. Strategy of enhancing the volumetric energy density for lithium-sulfur batteries[J]. Adv. Mater., 2021, 8(33): 2003955.
|
[14] |
Mikhaylik Y V, Akridge J R. Polysulfide shuttle study in the Li/S battery system[J]. J. Electrochem. Soc., 2004, 151(11): A1969-A1976.
|
[15] |
Xuan W M, Zhu C F, Liu Y, Cui Y. Mesoporous metal-organic framework materials[J]. Chem. Soc. Rev., 2012, 41(5): 1677-1695.
doi: 10.1039/c1cs15196g
pmid: 22008884
|
[16] |
Zheng J M, Tian J, Wu D X, Gu M, Xu W, Wang C M, Gao F, Engelhard M H, Zhang J G, Liu J, Xiao J. Lewis acid-base interactions between polysulfides and metal organic framework in lithium sulfur batteries[J]. Nano Lett., 2014, 14(5): 2345-2352.
doi: 10.1021/nl404721h
pmid: 24702610
|
[17] |
Sun L, Campbell M G, Dinca M. Electrically conductive porous metal-organic frameworks[J]. Angew. Chem., Int. Ed., 2016, 55(11): 3566-3579.
doi: 10.1002/anie.201506219
pmid: 26749063
|
[18] |
Zang Y, Pei F, Huang J H, Fu Z H, Xu G, Fang X L. Large-area preparation of crack‐free crystalline microporous conductive membrane to upgrade high energy lithium-sulfur batteries[J]. Adv. Energy Mater., 2018, 8(31): 1802052.
doi: 10.1002/aenm.v8.31
URL
|
[19] |
Qi C, Xu L, Wang J, Li H L, Zhao C C, Wang L N, Liu T X. Titanium-containing metal-organic framework modified separator for advanced lithium-sulfur batteries[J]. ACS Sustain. Chem. Eng., 2020, 8(34): 12968-12975.
doi: 10.1021/acssuschemeng.0c03536
URL
|
[20] |
Li W L, Ye Y S, Qian J, Xing Y, Qu W, Zhang N X, Li L, Wu F, Chen R J. Oxygenated nitrogen‐doped microporous nanocarbon as a permselective interlayer for ultrastable lithium‐sulfur batteries[J]. ChemElectroChem, 2019, 6(4): 1094-1100.
doi: 10.1002/celc.v6.4
URL
|
[21] |
Zhang Z, Wang J N, Shao A H, Xiong D G, Liu J W, Lao C Y, Xi K, Lu S Y, Jiang Q, Yu J, Li H L, Yang Z Y, Kumar R V. Recyclable cobalt-molybdenum bimetallic carbide modified separator boosts the polysulfide adsorption-catalysis of lithium sulfur battery[J]. Sci. China Mater., 2020, 63(12): 2443-2455.
doi: 10.1007/s40843-020-1425-2
|
[22] |
Bauer I, Thieme S, Brueckner J, Althues H, Kaskel S. Reduced polysulfide shuttle in lithium-sulfur batteries using Nation-based separators[J]. J. Power Sources, 2014, 251: 417-422.
doi: 10.1016/j.jpowsour.2013.11.090
URL
|
[23] |
Zhou J W, Li R, Fan X X, Chen Y F, Han R D, Li W, Zheng J, Wang B, Li X G. Rational design of a metal-organic framework host for sulfur storage in fast, long-cycle Li-S batteries[J]. Energy Environ. Sci., 2014, 7(8): 2715-2724.
doi: 10.1039/C4EE01382D
URL
|
[24] |
Xu Y X, Zheng S S, Tang H F, Guo X T, Xue H G, Pang H. Prussian blue and its derivatives as electrode materials for electrochemical energy storage[J]. Energy Storage Mater., 2017, 9: 11-30.
|
[25] |
Wu X, Fan L S, Qiu Y, Wang M X, Cheng J H, Guan B, Guo Z K, Zhang N Q, Sun K N. Ion-selective prussian-blue-modified celgard separator for high-performance lithium-sulfur battery[J]. ChemSusChem, 2018, 11(18): 3345-3351.
doi: 10.1002/cssc.201800871
pmid: 29944212
|