电化学(中英文) ›› 2022, Vol. 28 ›› Issue (9): 2214003. doi: 10.13208/j.electrochem.2214003
所属专题: “电催化和燃料电池”专题文章
郭丹丹1,2, 俞红梅1,*(), 迟军1, 邵志刚1,*()
收稿日期:
2022-05-23
修回日期:
2022-06-10
出版日期:
2022-09-28
发布日期:
2022-06-30
Dan-Dan Guo1,2, Hong-Mei Yu1,*(), Jun Chi1, Zhi-Gang Shao1,*()
Received:
2022-05-23
Revised:
2022-06-10
Published:
2022-09-28
Online:
2022-06-30
Contact:
*Tel:(86-411)84379051, E-mail: 摘要:
开发高效耐用的电极对碱性阴离子交换膜电解水(AEMWEs)制氢至关重要。在这项研究中,我们展示了一种高效且稳定的自支撑NiFe LDHs@Co-OH-CO3/NF纳米棒阵列电极分别用于析氧反应(OER)和AEMWE的阳极。在这项工作中,我们将2D的镍铁层状双金属氢氧化物纳米片(NiFe LDHs)原位生长在1D的碱式碳酸钴纳米线上(Co-OH-CO3/NF),最终得到独特的纳米棒阵列复合结构电极。在三电极体系中,自支撑NiFe LDHs@Co-OH-CO3/NF对OER具有良好的催化活性, 在1 mol·L-1 KOH中, 当电流密度为20 mA·cm-2时,过电位为215 mV。当自支撑NiFe LDHs@Co-OH-CO3/NF作为AEMWE的阳极(70 oC,1 mol·L-1 KOH),在电流密度为0.5 A·cm-2时, 电解电压为1.72 V,并且具有较好的稳定性。进一步的实验表征结果显示了自支撑NiFe LDHs@Co-OH-CO3/NF的优异性能是其具有特殊的形貌结构。这是由于纳米棒阵列电极的三维分层结构可以有效防止纳米片团聚, 从而有利于电子转移,为水分解提供大量的边缘活性位点。
郭丹丹, 俞红梅, 迟军, 邵志刚. 自支撑NiFe LDHs@Co-OH-CO3纳米棒阵列电极用于碱性阴离子交换膜电解水[J]. 电化学(中英文), 2022, 28(9): 2214003.
Dan-Dan Guo, Hong-Mei Yu, Jun Chi, Zhi-Gang Shao. Self-Supporting NiFe LDHs@Co-OH-CO3 Nanorod Array Electrode for Alkaline Anion Exchange Membrane Water Electrolyzer[J]. Journal of Electrochemistry, 2022, 28(9): 2214003.
Electrocatalyst | Substrate | η for OER at corresponding j (mV@mA cm-2) | Tafel slope (mV·dec-1) | Stability test | Reference |
---|---|---|---|---|---|
Fe: Ni/Ni2P IO | nickel foam | 285@20 (iR-compensated) | 48 | 20 mA·cm-2 for 100 h | [ |
Ni-Fe LDH DSNCS | glassy carbon electrode | 246@20 (iR-compensated) | 71 | 20 mA·cm-2 for 50 h | [ |
FeOOH/Co/FeOOH HNTAs-NF | nickel foam | 250@20 (iR-compensated) | - | 20 mA·cm-2 for 50 h | [ |
NiS2/NiSe2 | glassy carbon electrode | 290@20 (iR-compensated) | 119 | 100 mA·cm-2 for 20 h | [ |
Cu@CeO2@NFC-0.25 | copper foam | 231@10 (without iR compensated) | 32.7 | 10 and 20 mA·cm-2 for 30 h | [ |
NiFe-OH-PO4/NF | nickel foam | 249@20 ( iR compensated) | 41.8 | 100 mA·cm-2 for 10h | [ |
CoP@NiFe-OH | nickel foam | 220@20 (iR-compensated) | 49.6 | 20 mA·cm-2 for 24 h | [ |
CoO@NiFe LDH/NF | nickel foam | 225@20 (without iR-compensated) | 65 | 20 mA·cm-2 for 80 h | [ |
Ni0.9Fe0.1PS3 NSs | glassy carbon electrode | 329@20 (iR-compensated) | 69 | 30 mA·cm-2 for 50 h | [ |
NiFe LDHs@Co-OH- CO3/NF | nickel foam | 215@20 (without iR compensated) | 90 | 20 mA·cm-2 for 30 h | this work |
(anode||cathode) | Cell voltage V@ A·cm-2 | Cell temperature (oC) | Stability test (hours @A·cm-2) | Reference |
---|---|---|---|---|
NiFeCo LDH||NiFeCo phosphide | 1.75@0.5 | 50 | 40 @0.5 | [ |
FeOOH/NiFe LDHs@CCH NAs-NF||70 wt% Pt/C | 1.768@0.5 | 70 | 100 @0.5 | [ |
(0.4 mg·cm-2) | ||||
Co(OH)x/Ag/Co(OH)2||40 wt% Pt/C ( not mention) | 1.8@0.6 | 50 | 24 @0.6 | [ |
VCoCOx@NF || VCoCOx@NF | 2.01@0.2 | 45 | 12 @0.25 | [ |
CE-CCO||70 wt% Pt/C (1 mg·cm-2) | 1.8@1.39 | 45 | 64 @0.5 | [ |
NiFe LDHs@Co-OH-CO3/NF||70 wt% Pt/C(0.4 mg·cm-2) | 1.72@0.5 | 70 | 100 @0.5 | This work |
1.95@1 | 70 | - | This work |
[1] |
Zhang Z, Li X P, Zhong C, Zhao N Q, Deng Y D, Han X P, Hu W B. Spontaneous synthesis of silver-nanoparticle-decorated transition metal hydroxides for enhanced oxygen evolution reaction[J]. Angew. Chem. Int. Ed., 2020, 59(18): 7245-7250.
doi: 10.1002/anie.202001703 pmid: 32077180 |
[2] |
Xie X Y, Cao C S, Wei W B, Zhou S H, Wu X T, Zhu Q L. Ligand-assisted capping growth of self-supporting ultrathin FeNi-LDH nanosheet arrays with atomically dispersed chromium atoms for efficient electrocatalytic water oxidation[J]. Nanoscale, 2020, 12(10): 5817-5823.
doi: 10.1039/c9nr10781a pmid: 32119013 |
[3] |
Lv L, Yang Z X, Chen K, Wang C D, Xiong Y J. 2D layered double hydroxides for oxygen evolution reaction: from fundamental design to application[J]. Adv. Energy Mater., 2019, 9(17): 1803358.
doi: 10.1002/aenm.201803358 URL |
[4] |
You B, Zhang Y D, Jiao Y, Davey K, Qiao S Z. Negative charging of transition-metal phosphides via strong electronic coupling for destabilization of alkaline water[J]. Angew. Chem. Int. Ed., 2019, 58(34): 11796-11800.
doi: 10.1002/anie.201906683 pmid: 31194286 |
[5] |
Qi J, Lin Y P, Chen D D, Zhou T H, Zhang W, Cao R. Autologous cobalt phosphates with modulated coordination sites for electrocatalytic water oxidation[J]. Angew. Chem. Int. Ed., 2020, 59(23): 8917-8921.
doi: 10.1002/anie.202001737 pmid: 32112670 |
[6] |
Yao R Q, Shi H, Wan W B, Wen Z, Lang X Y, Jiang Q. Flexible Co-Mo-N/Au electrodes with a hierarchical nano-porous architecture as highly efficient electrocatalysts for oxygen evolution reaction[J]. Adv. Mater., 2020, 32(10): 1907214.
doi: 10.1002/adma.201907214 URL |
[7] |
Javaid S, Xu X M, Chen W, Chen J Y, Hsu H Y, Wang S, Yang X Y, Li Y G, Shao Z P, Jones F, Jia G H. Ni2+/Co2+ doped Au-Fe7S8 nanoplatelets with exceptionally high oxygen evolution reaction activity[J]. Nano Energy, 2021, 89: 106463.
doi: 10.1016/j.nanoen.2021.106463 URL |
[8] |
Jiang G, Yu H M, Li Y H, Yao D W, Chi J, Sun S C, Shao Z G. Low-loading and highly stable membrane electrode based on an Ir@WOxNR ordered array for PEM water electrolysis[J]. ACS Appl. Mater. Interfaces, 2021, 13(13): 15073-15082.
doi: 10.1021/acsami.0c20791 URL |
[9] |
Moriau L, Bele M, Marinko Ž, Ruiz-Zepeda F, Podboršek G K, Šala M, Šurca A K, Kovac J, Arcon I, Jovanovic P, Hodnik N, Suhadolnik L. Effect of the morphology of the high-surface-area support on the performance of the oxygen-evolution reaction for iridium nanoparticles[J]. ACS Catal., 2021, 11(2): 670-681.
doi: 10.1021/acscatal.0c04741 pmid: 33489433 |
[10] |
Yao Q, Huang B L, Xu Y, Li L G, Shao Q, Huang X Q. A chemical etching strategy to improve and stabilize RuO2-basd nano assemblies for acidic oxygen evolution[J]. Nano Energy, 2021, 84: 105909.
doi: 10.1016/j.nanoen.2021.105909 URL |
[11] |
Han X P, Ling X F, Yu D S, Xie D Y, Li L L, Peng S J, Zhong C, Zhao N Q, Deng Y D, Hu W B. Atomically dispersed binary Co-Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution[J]. Adv. Mater., 2019, 31(49): 1905622.
doi: 10.1002/adma.201905622 URL |
[12] |
Sun S N, Sun Y M, Zhou Y, Xi S B, Ren X, Huang B C, Liao H B, Wang L Y P, Du Y H, Xu Z C. Shifting oxygen charge towards octahedral metal: a way to promote water oxidation on cobalt spinel oxides[J]. Angew. Chem. Int. Ed., 2019, 58(18): 6042-6047.
doi: 10.1002/anie.201902114 pmid: 30860633 |
[13] |
Chen J S, Li H, Chen S M, Fei J Y, Liu C, Yu Z X, Shin K, Liu Z W, Song L, Henkelman G, Wei L, Chen Y. Co-Fe-Cr (oxy)hydroxides as efficient oxygen evolution reaction catalysts[J]. Adv. Energy Mater., 2021, 11(11): 2003412.
doi: 10.1002/aenm.202003412 URL |
[14] |
Guo X L, Zheng X Q, Hu X L, Zhao Q N, Li L, Yu P, Jing C, Zhang Y X, Huang G S, Jiang B, Xu C H, Pan F S. Electrostatic adsorbing graphene quantum dot into nickel-based layered double hydroxides: Electron absorption/donor effects enhanced oxygen electrocatalytic activity[J]. Nano Energy, 2021, 84: 105932.
doi: 10.1016/j.nanoen.2021.105932 URL |
[15] |
Wang Y, Yan L T, Dastafkan K, Zhao C, Zhao X B, Xue Y Y, Huo J M, Li S N, Zhai Q G. Lattice matching growth of conductive hierarchical porous MOF/LDH heteronanotube arrays for highly efficient water oxidation[J]. Adv. Mater., 2021, 33(8): 2006351.
doi: 10.1002/adma.202006351 URL |
[16] |
Wang Y, Liu B R, Shen X J, Arandiyan H, Zhao T W, Li Y B, Garbrecht M, Su Z, Han L, Tricoli A, Zhao C. Engineering the activity and stability of MOF-nanocomposites for efficient water oxidation[J]. Adv. Energy Mater., 2021, 11(16): 2003759.
doi: 10.1002/aenm.202003759 URL |
[17] |
Gao L K, Cui X, Wang Z W, Sewell C D., Li Z L, Liang S, Zhang M Y, Li J, Hu Y J, Lin Z Q. Operando unraveling photothermal-promoted dynamic active-sites generation in NiFe2O4 for markedly enhanced oxygen evolution[J]. PNAS, 2021, 118(7):e2023421118.
doi: 10.1073/pnas.2023421118 URL |
[18] |
Wang K, Du H F, He S, Liu L, Yang K, Sun J M, Liu Y H, Du Z Z, Xie L H, Ai W, Huang W. Kinetically controlled, scalable synthesis of γ-FeOOH nanosheet arrays on nickel foam toward efficient oxygen evolution: The key role of in-situ-generated γ-NiOOH[J]. Adv. Mater., 2021, 33(11): 2005587.
doi: 10.1002/adma.202005587 URL |
[19] |
Hao Y M, Li Y F, Wu J X, Meng L S, Wang J L, Jia C L, Liu T, Yang X J, Liu Z P, Gong M. Recognition of surface oxygen intermediates on NiFe oxyhydroxide oxygen-evolving catalysts by homogeneous oxidation reactivity[J]. J. Am. Chem. Soc., 2021, 143(3): 1493-1502.
doi: 10.1021/jacs.0c11307 pmid: 33439638 |
[20] |
Liu P, Chen B, Liang C W, Yao W T, Cui Y Z, Hu S Y, Zou P C, Zhang H, Fan H J, Yang C. Tip-enhanced electric field: A new mechanism promoting mass transfer in oxygen evolution reactions[J]. Adv. Mater., 2021, 33(9): 2007377.
doi: 10.1002/adma.202007377 URL |
[21] |
Tran D T, Le H T, Hoa V H, Kim N H, Lee J H. Dual-coupling ultrasmall iron-Ni2P into P-doped porous carbon sheets assembled CuxS nanobrush arrays for overall water splitting[J]. Nano Energy, 2021, 84: 105861.
doi: 10.1016/j.nanoen.2021.105861 URL |
[22] |
Han L, Dong S J, Wang E K. Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction[J]. Adv. Mater., 2016, 28(42): 9266-9291.
doi: 10.1002/adma.201602270 URL |
[23] |
Kargar A, Yavuz S, Kim T K, Liu C-H, Kuru C, Rustomji C S, Jin S, Bandaru P R. Solution-processed CoFe2O4 nanoparticles on 3D carbon fiber papers for durable oxygen evolution reaction[J]. ACS Appl. Mater. Interfaces, 2015, 7(32): 17851-17856.
doi: 10.1021/acsami.5b04270 URL |
[24] | Shah J H, Xie Q X, Kuang Z C, Ge R L, Zhou W H, Liu D R, Rykov A I, Li X N, Luo J S, Wang J H. In-situ/op-erando 57Fe mössbauer spectroscopic technique and its applications in NiFe-based electrocatalysts for oxygen evolution reaction[J]. J. Electrochem., 2022, 28(3): 51-81. |
[25] |
Zhao J, Zhang J J, Li Z Y, Bu X H. Recent progress on NiFe-based electrocatalysts for the oxygen evolution reaction[J]. Small, 2020, 16(51): 2003916.
doi: 10.1002/smll.202003916 URL |
[26] |
Dionigi F, Strasser P. NiFe-based (oxy)hydroxide catalysts for oxygen evolution reaction in non-acidic electrolytes[J]. Adv. Energy Mater., 2016, 6(23): 1600621.
doi: 10.1002/aenm.201600621 URL |
[27] |
Chi J, Yu H M, Qin B W, Fu L, Jia J, Yi B L, Shao Z G. Vertically aligned FeOOH/NiFe layered double hydroxides electrode for highly efficient oxygen evolution reaction[J]. ACS Appl. Mater. Interfaces, 2017, 9(1): 464-471.
doi: 10.1021/acsami.6b13360 URL |
[28] |
Li Y, Guo S W, Jin T, Wang Y L, Cheng F Y, Jiao L F. Promoted synergy in core-branch CoP@NiFe-OH nano-hybrids for efficient electrochemical-/photovoltage-driven overall water splitting[J]. Nano Energy, 2019, 63: 103821.
doi: 10.1016/j.nanoen.2019.06.017 URL |
[29] |
Zhao Y F, Zhang X, Jia X D, Waterhouse G I N., Shi R, Zhang X R, Zhan F, Tao Y, Wu L Z, Tung C H, O’Hare D, Zhang T R. Sub-3 nm ultrafine monolayer layered double hydroxide nanosheets for electrochemical water oxidation[J]. Adv. Energy Mater., 2018, 8(18): 1703585.
doi: 10.1002/aenm.201703585 URL |
[30] |
Kuai C G, Zhang Y, Wu D Y, Sokaras D, Mu L Q, Spence S, Nordlund D, Lin F, Du X W. Fully oxidized Ni-Fe layered double hydroxide with 100% exposed active sites for catalyzing oxygen evolution reaction[J]. ACS Catal., 2019, 9(7): 6027-6032.
doi: 10.1021/acscatal.9b01935 URL |
[31] |
Chi J, Yu H M, Jiang G, Jia J, Qin B W, Yi B L, Shao Z G. Construction of orderly hierarchical FeOOH/NiFe layered double hydroxides supported on cobaltous carbonate hydroxide nanowire arrays for a highly efficient oxygen evolution reaction[J]. J. Mater. Chem. A, 2018, 6(8): 3397-3401.
doi: 10.1039/C7TA10747A URL |
[32] |
Jeon S S, Lim J, Kang P W, Lee J W, Kang G, Lee H. Design principles of NiFe-layered double hydroxide anode catalysts for anion exchange membrane water electrolyzers[J]. ACS Appl. Mater. Interfaces, 2021, 13(31): 37179-37186.
doi: 10.1021/acsami.1c09606 URL |
[33] |
Guo W W, Kim J, Kim H, Han G H, Jang H W, Kim S Y, Ahn S H. Sandwich-like Co(OH)x/Ag/Co(OH)2 nanosheet composites for oxygen evolution reaction in anion exchange membrane water electrolyzer[J]. J. Alloys Compd., 2021, 889: 161674.
doi: 10.1016/j.jallcom.2021.161674 URL |
[34] |
Lee J, Jung H, Park Y S, Kwon N, Woo S, Selvam N. C S, Han G S, Jung H S, Yoo P J, Choi S M, Han J W, Lim B. Chemical transformation approach for high-performance ternary NiFeCo metal compound-based water splitting electrodes[J]. Appl. Catal., B, 2021, 294: 120246.
doi: 10.1016/j.apcatb.2021.120246 URL |
[35] |
Zhang H, Shen G Q, Liu X Y, Ning B, Shi C X, Pan L, Zhang X W, Huang Z F, Zou J J. Self-supporting NiFe LDH-MoSx integrated electrode for highly efficient water splitting at the industrial electrolysis conditions[J]. Chin. J. Catal., 2021, 42(10): 1732-1741.
doi: 10.1016/S1872-2067(21)63796-8 URL |
[36] |
Meena A, Thangavel P, Nissimagoudar A S, Singh A N, Jana A, Jeong D S, Im H, Kim K S. Bifunctional oxovanadate doped cobalt carbonate for high-efficient overall water splitting in alkaline-anion-exchange-membrane water-electrolyzer[J]. Chem. Eng. J., 2022, 430: 132623.
doi: 10.1016/j.cej.2021.132623 URL |
[37] |
Wang J Y, Li S M, Lin R B, Tu G M, Wang J, Li Z Q. MOF-derived hollow β-FeOOH polyhedra anchored with α-Ni(OH)2 nanosheets as efficient electrocatalysts for oxygen evolution[J]. Electrochim. Acta, 2019, 301: 258-266.
doi: 10.1016/j.electacta.2019.01.157 URL |
[38] |
Zhai P L, Xia M Y, Wu Y Z, Zhang G H, Gao J F, Zhang B, Cao S Y, Zhang Y T, Li Z W, Fan Z Z, Wang C, Zhang X M, Miller J T, Sun L C, Hou J G. Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting[J]. Nat. Commun., 2021, 12(1): 4587.
doi: 10.1038/s41467-021-24828-9 pmid: 34321467 |
[39] |
Han M Y, Zhang X W, Gao H Y, Chen S Y, Cheng P, Wang P, Zhao Z Y, Dang R, Wang G. In situ semi-sacrificial template-assisted growth of ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution[J]. Chem. Eng. J., 2021, 426: 131348.
doi: 10.1016/j.cej.2021.131348 URL |
[40] |
Dou Y H, He C T, Zhang L, Yin H J, Al-Mamun M, Ma J M, Zhao H J. Approaching the activity limit of CoSe2 for oxygen evolution via Fe doping and Co vacancy[J]. Nat. Commun., 2020, 11(1): 1664.
doi: 10.1038/s41467-020-15498-0 URL |
[41] |
Peng L S, Yang N, Yang Y Q, Wang Q, Xie X Y, Sun-Waterhouse D, Shang L, Zhang T R, Waterhouse G I N. Atomic cation-vacancy engineering of NiFe-layered double hydroxides for improved activity and stability towards the oxygen evolution reaction[J]. Angew. Chem. Int. Ed., 2021, 60(46): 24612-24619.
doi: 10.1002/anie.202109938 pmid: 34523207 |
[42] |
Zhang J T, Yu L, Chen Y, Lu X F, Gao S Y, Lou X W. Designed formation of double-shelled Ni-Fe layered-double-hydroxide nanocages for efficient oxygen evolution reaction[J]. Adv. Mater., 2020, 32(16): 1906432.
doi: 10.1002/adma.201906432 URL |
[43] |
Yan Z, Wang E D, Gao J X, Yang J P, Wu C C, Jiang L H, Zhu M Y, Sun G Q. An exceptionally facile synthesis of high efficient oxygen evolution electrodes for zinc-ox-ygen batteries[J]. ChemElectroChem, 2017, 4(9): 2190-2195.
doi: 10.1002/celc.201700477 URL |
[44] |
Wang Z P, Zhang J H, Yu Q Y, Yang H Y, Chen X, Yuan X, Huang K, Xiong X L. Synthesis of 3D CoO nanowires supported NiFe layered double hydroxide using an atmospheric pressure microplasma for high-performance oxygen evolution reaction[J]. Chem. Eng. J., 2021, 410: 128366.
doi: 10.1016/j.cej.2020.128366 URL |
[45] |
Boppella R, Tan J W, Yang W, Moon J. Homologous CoP/NiCoP heterostructure on N-doped carbon for highly efficient and pH-universal hydrogen evolution electrocatalysis[J]. Adv. Funct. Mater., 2019, 29(6): 1807976.
doi: 10.1002/adfm.201807976 URL |
[46] |
Du Y M, Qu H Q, Liu Y R, Han Y, Wang L, Dong B. Bimetallic CoFeP hollow microspheres as highly efficient bifunctional electrocatalysts for overall water splitting in alkaline media[J]. Appl. Surf. Sci., 2019, 465: 816-823.
doi: 10.1016/j.apsusc.2018.09.231 URL |
[47] | Cui L, Sun X P, Xu Y H, Yang W R, Liu J Q. Cobalt carbonate hydroxide nanowire array on Ti mesh: an efficient and robust 3D catalyst for on-demand hydrogen generation from alkaline NaBH4 solution[J]. Chem. Eur.J., 2016, 22(42): 14831-14835. |
[48] |
Zhang Y X, Xiao Q Q, Guo X, Zhang X X, Xue Y F, Jing L, Zhai X, Yan Y M, Sun K N. A novel electrocatalyst for oxygen evolution reaction based on rational anchoring of cobalt carbonate hydroxide hydrate on multiwall carbon nanotubes[J]. J. Power Sources, 2015, 278: 464-472.
doi: 10.1016/j.jpowsour.2014.12.092 URL |
[49] |
Veerasubramani G K, Chandrasekhar A, P. Sudhakaran M S P, Mok Y S, Kim S J. Liquid electrolyte mediated flexible pouch-type hybrid supercapacitor based on binderless core-shell nanostructures assembled with honeycomblike porous carbon[J]. J. Mater. Chem. A, 2017, 5(22): 11100-11113.
doi: 10.1039/C7TA01308F URL |
[50] |
Lu X Y, Zhao C A. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities[J]. Nat. Commun., 2015, 6: 6616.
doi: 10.1038/ncomms7616 pmid: 25776015 |
[51] |
Bates M K, Jia Q Y, Doan H, Liang W T, Mukerjee S. Charge-transfer effects in Ni-Fe and Ni-Fe-Co mixed-metal oxides for the alkaline oxygen evolution reaction[J]. ACS Catal., 2016, 6(1): 155-161.
doi: 10.1021/acscatal.5b01481 URL |
[52] |
Louie M W, Bell A T. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen[J]. J. Am. Chem. Soc., 2013, 135(33): 12329-12337.
doi: 10.1021/ja405351s pmid: 23859025 |
[53] |
Zhou Q W, Pu J, Sun X L, Zhu C, Li J C, Wang J, Chang S Z, Zhang H G. In situ surface engineering of nickel inverse opal for enhanced overall electrocatalytic water splitting[J]. J. Mater. Chem. A, 2017, 5(28): 14873-14880.
doi: 10.1039/C7TA03044D URL |
[54] |
Feng J X, Xu H, Dong Y T, Ye S H, Tong Y X, Li G R. FeOOH/Co/FeOOH hybrid nanotube arrays as high-performance electrocatalysts for the oxygen evolution reaction[J]. Angew. Chem. Int. Ed., 2016, 55(11): 3694-3698.
doi: 10.1002/anie.201511447 URL |
[55] |
Yang Y, Kang Y K, Zhao H H, Dai X P, Cui M L, Luan X B, Zhang X, Nie F, Ren Z T, Song W Y. An interfacial electron transfer on tetrahedral NiS2/NiSe2 heterocages with dual-phase synergy for efficiently triggering the oxygen evolution reaction[J]. Small, 2020, 16(1): 1905083.
doi: 10.1002/smll.201905083 URL |
[56] |
Xia J L, Zhao H Y, Huang B L, Xu L L, Luo M, Wang J W, Luo F, Du Y P, Yan C H. Efficient optimization of electron/oxygen pathway by constructing ceria/hydroxide interface for highly active oxygen evolution reaction[J]. Adv. Funct. Mater., 2020, 30(9): 1908367.
doi: 10.1002/adfm.201908367 URL |
[57] |
Lei Z W, Bai J J, Li Y B, Wang Z L, Zhao C. Fabrication of nanoporous nickel-iron hydroxyl phosphate composite as bifunctional and reversible catalyst for highly efficient intermittent water splitting[J]. ACS Appl. Mater. Interfaces, 2017, 9(41): 35837-35846.
doi: 10.1021/acsami.7b10385 URL |
[58] |
Song B, Li K, Yin Y, Wu T, Dang L N, Caban-Acevedo M, Han J C, Gao T L, Wang X J, Zhang Z H, Schmidt J R, Xu P, Jin S. Tuning mixed nickel iron phosphosulfide nanosheet electrocatalysts for enhanced hydrogen and oxygen evolution[J]. ACS Catal., 2017, 7(12): 8549-8557.
doi: 10.1021/acscatal.7b02575 URL |
[59] |
Wang J Y, Wang J, Zhang M, Li S M, Liu R, Li Z Q. Metal-organic frameworks-derived hollow-structured iron-cobalt bimetallic phosphide electrocatalysts for efficient oxygen evolution reaction[J]. J. Alloys Compd., 2020, 821: 153463.
doi: 10.1016/j.jallcom.2019.153463 URL |
[60] |
Wu H, Lu X, Zheng G F, Ho G W. Topotactic engineering of ultrathin 2D nonlayered nickel selenides for full water electrolysis[J]. Adv. Energy Mater., 2018, 8(14): 1702704.
doi: 10.1002/aenm.201702704 URL |
[61] |
Zhang P L, Li L, Nordlund D, Chen H, Fan L Z, Zhang B B, Sheng X, Daniel Q, Sun L C. Dendritic core-shell nickel-iron-copper metal/metal oxide electrode for efficient electrocatalytic water oxidation[J]. Nat. Commun., 2018, 9: 381.
doi: 10.1038/s41467-017-02429-9 pmid: 29374160 |
[62] |
Yu M Z, Wang Z Y, Liu J S, Sun F, Yang P J, Qiu J S. A hierarchically porous and hydrophilic 3D nickel-iron/mxene electrode for accelerating oxygen and hydrogen evolution at high current densities[J]. Nano Energy, 2019, 63: 103880.
doi: 10.1016/j.nanoen.2019.103880 URL |
[63] |
Song F, Hu X L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis[J]. Nat. Commun., 2014, 5: 4477.
doi: 10.1038/ncomms5477 pmid: 25030209 |
[64] |
Zhu X L, Tang C, Wang H F, Zhang Q, Yang C H, Wei F. Dual-sized NiFe layered double hydroxides in situ grown on oxygen-decorated self-dispersal nanocarbon as enhanced water oxidation catalysts[J]. J. Mater. Chem. A, 2015, 3(48): 24540-24546.
doi: 10.1039/C5TA08019C URL |
[65] |
Park Y S, Yang J C, Lee J M, Jang M J, Jeong J, Choi W S, Kim Y, Yin Y D, Seo M H, Chen Z W, Choi S M. Superior performance of anion exchange membrane water electrolyzer: ensemble of producing oxygen vacancies and controlling mass transfer resistance[J]. Appl. Catal. B, 2020, 278: 119276.
doi: 10.1016/j.apcatb.2020.119276 URL |
[1] | 丁明宇, 蒋文杰, 余天琦, 卓小燕, 覃晓静, 尹诗斌. CeO2电子调控FeNi纳米片大电流密度电解水催化剂[J]. 电化学(中英文), 2023, 29(5): 2208121-. |
[2] | 李家欣, 冯立纲. 析氧反应铁镍基预催化剂的表界面调控与进展[J]. 电化学(中英文), 2022, 28(9): 2214001-. |
[3] | Jafar Hussain Shah, 谢起贤, 匡智崇, 格日乐, 周雯慧, 刘朵绒, Alexandre I. Rykov, 李旭宁, 罗景山, 王军虎. 原位57Fe穆斯堡尔光谱技术及其在Ni-Fe基析氧反应电催化剂中的应用[J]. 电化学(中英文), 2022, 28(3): 2108541-. |
[4] | 张丽桦, 揣宏媛, 刘海, 范群, 况思宇, 张生, 马新宾. 尖晶石钴氧化物的晶面调控与析氧活性研究[J]. 电化学(中英文), 2022, 28(2): 2108481-. |
[5] | 陈丹丹, 高学庆, 刘红飞, 张 伟, 曹 睿. 经由[Ni(en)3](SeO3)配合物电镀制备的硒化镍高效电催化水分解反应[J]. 电化学(中英文), 2019, 25(5): 553-561. |
[6] | 唐堂,江文杰,牛帅,胡劲松. 高性能析氧电催化剂的设计策略[J]. 电化学(中英文), 2018, 24(5): 409-426. |
[7] | 赵丹丹,张楠,卜令正,邵琪,黄小青. 非贵金属电催化析氧催化剂的最新进展[J]. 电化学(中英文), 2018, 24(5): 455-465. |
[8] | 张 瑞,吕伟欣,雷立旭. H型电解池中CO2电化学还原的阳极电解液问题[J]. 电化学(中英文), 2017, 23(1): 72-79. |
[9] | 杨太来,董文燕,杨慧敏,张力,梁镇海*. 二元析氧催化剂CoxCr1-xO3/2的制备及性能研究[J]. 电化学(中英文), 2015, 21(2): 187-192. |
[10] | 隋升;马丽荣;. 负载型氧电极PtRuIr/TiC催化剂的制备、结构及CV研究[J]. 电化学(中英文), 2007, 13(3): 302-306. |
[11] | 梁镇海,王森,孙彦平,许文林. Ti/SnO_2+Sb_2O_3/PbO_2阳极的性能研究[J]. 电化学(中英文), 1995, 1(4): 456-460. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||