电化学(中英文) ›› 2022, Vol. 28 ›› Issue (2): 2108481. doi: 10.13208/j.electrochem.210848
所属专题: “电催化和燃料电池”专题文章
• 电化学前沿专辑(蔡文斌教授、廖洪钢教授、彭章泉研究员主编) • 上一篇 下一篇
张丽桦1,2, 揣宏媛1,*(), 刘海1, 范群1, 况思宇1, 张生1,3,*(), 马新宾1,3
收稿日期:
2021-10-25
修回日期:
2021-11-30
出版日期:
2022-02-28
发布日期:
2022-01-02
Li-Hua Zhang1,2, Hong-Yuan Chuai1,*(), Hai Liu1, Qun Fan1, Si-Yu Kuang1, Sheng Zhang1,3,*(), Xin-Bin Ma1,3
Received:
2021-10-25
Revised:
2021-11-30
Published:
2022-02-28
Online:
2022-01-02
Contact:
*Hong-Yuan Chuai, Tel: (86)18920501321, E-mail: chuaihongyuan@tju.edu.cn,Sheng Zhang, Tel: (86)13116156703, E-mail: sheng.zhang@tju.edu.cn
摘要:
由可再生能源驱动的水分解是一种有前途的生产清洁能源的技术,而发生在阳极的析氧反应是水分解反应的速率决定步骤。本文通过调整催化剂的晶面,暴露更多的有效活性位点调控尖晶石钴氧化物析氧反应活性。在三个合成晶面(100)、(111)和(110)中,(100)晶面本征活性最高。结合原位红外和DFT计算分析可知,OER反应在氧化钴晶体的(100)平面上反应能垒最低。XPS分析进一步表明,纳米立方体表面具有最高的Co3+/Co2+比值,该结果表明Co3+是更活跃的析氧反应活性位点。
张丽桦, 揣宏媛, 刘海, 范群, 况思宇, 张生, 马新宾. 尖晶石钴氧化物的晶面调控与析氧活性研究[J]. 电化学(中英文), 2022, 28(2): 2108481.
Li-Hua Zhang, Hong-Yuan Chuai, Hai Liu, Qun Fan, Si-Yu Kuang, Sheng Zhang, Xin-Bin Ma. Facet Dependent Oxygen Evolution Activity of Spinel Cobalt Oxides[J]. Journal of Electrochemistry, 2022, 28(2): 2108481.
Figure 4.
Electrochemical activity test of cobalt oxides with different shapes. (A) 5 mV·s-1 sweep rate LSV curves in 1 mol·L-1 KOH solution of Co3O4 nanoparticles with different morphologies; (B) Amperometric i-t curves of three samples during 7200-s test. (C) Cyclic voltammograms (CVs) of Nano particles; (D) Cyclic voltammograms (CVs) of Nanocubes; (E) Cyclic voltammograms (CVs) of Plate-like sheets measured at different scan rates from 2 to 10 mV·s-1; (F) ΔJ(=Ja - Jc) plotted against scan rates; (G) ECSA normalized LSV curves; (H) Tafel slopes of OER plotted based on the ECSA normalized LSV curves. (color on line)
Figure 5.
In-situ FT-IR spectra recorded at different potentials of cobalt oxides with various shapes. (A) Nanoparticles; (B) Nanocubes; (C) Plate-like sheets. Experiment conditions: Pt wire and Hg/HgO were used as the counter electrode and reference electrode, respectively, and electrolyte was 1 mol·L-1 KOH solution. FT-IR spectra were recorded after 60-s electrolysis at different potentials vs. RHE. (color on line)
Figure 6.
Energy diagrams of DFT calculations. Schematic energy profiles for the three typical (oxy)hydroxides on cobalt oxides in OER. (A) (111) crystal plane. (B) (100) crystal plane. (C) (110) crystal plane. The energy profiles presented here adopt the definition under an applied potential E = 0 V versus RHE (the black line) and an applied potential E = 1.23 V versus RHE (the red line). D: Comparison in different crystal planes of cobalt oxides under an applied potential E = 1.23 V versus RHE. (color on line)
[1] |
Jamesh M I, Sun X M. Recent progress on earth abundant electrocatalysts for oxygen evolution reaction (OER) in alkaline medium to achieve efficient water splitting - A review[J]. J. Power Sources, 2018, 400:31-68.
doi: 10.1016/j.jpowsour.2018.07.125 URL |
[2] |
Jiang H, Gu J X, Zheng X S, Liu M, Qiu X Q, Wang L B, Li W Z, Chen Z F, Ji X B, Li J. Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER[J]. Energy Environ. Sci., 2019, 12(1):322-333.
doi: 10.1039/C8EE03276A URL |
[3] |
Jahan M, Liu Z L, Loh K P. A Graphene oxide and coppercentered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR[J]. Adv. Funct. Mater., 2013, 23(43):5363-5372.
doi: 10.1002/adfm.v23.43 URL |
[4] |
Zhang L H, Fan Q, Li K, Zhang S, Ma X B. First-row transition metal oxide oxygen evolution electrocatalysts: regulation strategies and mechanistic understandings[J]. Sustain. Energy Fuels, 2020, 4(11):5417-5432.
doi: 10.1039/D0SE01087A URL |
[5] |
Jamesh M I, Harb M. Tuning the electronic structure of the earth-abundant electrocatalysts for oxygen evolution reaction (OER) to achieve efficient alkaline water splitting - A review[J]. J. Energy Chem., 2021, 56:299-342.
doi: 10.1016/j.jechem.2020.08.001 URL |
[6] |
Zhang S, Fan Q, Xia R, Meyer T J. CO2 reduction: from homogeneous to heterogeneous electrocatalysis[J]. Accounts Chem. Res., 2020, 53(1):255-264.
doi: 10.1021/acs.accounts.9b00496 URL |
[7] |
Liu H, Su Y Q, Kuang S Y, Hensen E J M, Zhang S, Ma X B. Highly efficient CO2 electrolysis within a wide operation window using octahedral tin oxide single crystals[J]. J. Mater. Chem. A, 2021, 9(12):7848-7856.
doi: 10.1039/D1TA00285F URL |
[8] |
Karmakar A, Karthick K, Sankar S S, Kumaravel S, Madhu R, Kundu S. A vast exploration of improvising synthetic strategies for enhancing the OER kinetics of LDH structures: a review[J]. J. Mater. Chem. A, 2021, 9(3):1314-1352.
doi: 10.1039/D0TA09788H URL |
[9] |
Duan Y, Sun S N, Sun Y M, Xi S B, Chi X, Zhang Q H, Ren X, Wang J X, Ong S J H, Du Y H, Gu L, Grimaud A, Xu Z C J. Mastering surface reconstruction of metastable spinel oxides for better water oxidation[J]. Adv. Mater., 2019, 31(12):1807898.
doi: 10.1002/adma.v31.12 URL |
[10] |
Sun Y M, Liao H B, Wang J R, Chen B, Sun S N, Ong S J H, Xi S B, Diao C Z, Du Y H, Wang J O, Breese M B H, Li S Z, Zhang H, Xu Z C J. Author Correction: Covalency competition dominates the water oxidation structure-activity relationship on spinel oxides[J]. Nat. Catal., 2020, 3(11):959.
doi: 10.1038/s41929-020-00548-z URL |
[11] |
Reier T, Oezaslan M, Strasser P. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt Catalysts: A comparative study of nanoparticles and bulk materials[J]. ACS Catal., 2012, 2(8):1765-1772.
doi: 10.1021/cs3003098 URL |
[12] |
Acedera R A E, Gupta G, Mamlouk M, Balela M D L. Solution combustion synjournal of porous Co3O4 nanoparticles as oxygen evolution reaction (OER) electrocatalysts in alkaline medium[J]. J. Alloy. Compd., 2020, 836:154919.
doi: 10.1016/j.jallcom.2020.154919 URL |
[13] |
Wang C X, Shi P H, Cai X D, Xu Q J, Zhou X J, Zhou X L, Yang D, Fan J C, Min Y L, Ge H H, Yao W F. Synergistic effect of Co3O4 nanoparticles and graphene as catalysts for peroxymonosulfate-based orange II degradation with high oxidant utilization efficiency[J]. J. Phys. Chem. C, 2016, 120(1):336-344.
doi: 10.1021/acs.jpcc.5b10032 URL |
[14] |
Xiao Z, Huang Y C, Dong C L, Xie C, Liu Z J, Du S Q, Chen W, Yan D F, Tao L, Shu Z W, Zhang G H, Duan H G, Wang Y Y, Zou Y Q, Chen R, Wang S Y. Operando identification of the dynamic behavior of oxygen vacancyrich Co3O4 for oxygen evolution reaction[J]. J. Am. Chem. Soc., 2020, 142(28):12087-12095.
doi: 10.1021/jacs.0c00257 URL |
[15] |
Peng Y, Hajiyani H, Pentcheva R. Influence of Fe and Ni Doping on the OER Performance at the Co3O4 (001) Surface: Insights from DFT+ U Calculations[J]. ACS Catal., 2021, 11(9):5601-5613.
doi: 10.1021/acscatal.1c00214 URL |
[16] |
Xu L, Jiang Q Q, Xiao Z H, Li X Y, Huo J, Wang S Y, Dai L M. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction[J]. Angew. Chem. Int. Ed., 2016, 128(17):5363-5367.
doi: 10.1002/ange.201600687 URL |
[17] |
Zhang Y X, Ding F, Deng C, Zhen S Y, Li X Y, Xue Y F, Yan Y M, Sun K N. Crystal plane-dependent electrocatalytic activity of Co3O4 toward oxygen evolution reaction[J]. Catal. Commun., 2015, 67:78-82.
doi: 10.1016/j.catcom.2015.04.012 URL |
[18] |
Liu L, Jiang Z Q, Fang L, Xu H T, Zhang H J, Gu X, Wang Y. Probing the crystal plane effect of Co3O4 for enhanced electrocatalytic performance toward efficient overall water splitting[J]. ACS Appl. Mater. Inter., 2017, 9(33):27736-27744.
doi: 10.1021/acsami.7b07793 URL |
[19] |
Liu Q F, Chen Z P, Yan Z, Wang Y, Wang E D, Wang S, Wang S D, Sun G Q. Crystal-plane-dependent activity of spinel Co3O4 towards water splitting and the oxygen reduction reaction[J]. ChemElectroChem, 2018, 5(7):1080-1086.
doi: 10.1002/celc.201701302 URL |
[20] |
Zhu K Y, Zhu X F, Yang W S. Application of in situ techniques for the characterization of NiFe-based oxygen evolution reaction (OER) electrocatalysts[J]. Angew. Chem. Int. Ed., 2019, 58(5):1252-1265.
doi: 10.1002/anie.201802923 URL |
[21] |
Xiao X L, Liu X F, Zhao H, Chen D F, Liu F Z, Xiang J H, Hu Z B, Li Y D. Facile shape control of Co3O4 and the effect of the crystal plane on electrochemical performance[J]. Adv. Mater., 2012, 24(42):5762-5766.
doi: 10.1002/adma.v24.42 URL |
[22] |
Zhang J J, Wang H H, Zhao T J, Zhang K X, Wei X, Li X H, Hirano S I, Chen J S. Oxygen vacancy engineering of Co3O4 nanocrystals through coupling with metal support for water oxidation[J]. ChemSusChem, 2017, 10(14):2875-2879.
doi: 10.1002/cssc.v10.14 URL |
[23] |
He D, Song X Y, Li W Q, Tang C Y, Liu J C, Ke Z J, Jiang C Z, Xiao X H. Active electron density modulation of Co3O4-based catalysts enhances their oxygen evolution performance[J]. Angew. Chem. In.t Ed., 2020, 132(17):6996-7002.
doi: 10.1002/ange.v132.17 URL |
[24] |
Kumar K, Canaff C, Rousseau J, Arrii-Clacens S, Napporn T W, Habrioux A, Kokoh K B. Effect of the oxide-carbon heterointerface on the activity of Co3O4/NRGO nano-composites toward ORR and OER[J]. J. Phys. Chem. C, 2016, 120(15):7949-7958.
doi: 10.1021/acs.jpcc.6b00313 URL |
[25] |
Tang D, Ma Y, Liu Y, Wang K K, Liu Z, Li W Z, Li J. Amorphous three-dimensional porous Co3O4 nanowire network toward superior OER catalysis by lithium-induced[J]. J. Alloy Compd., 2021, 893:162287.
doi: 10.1016/j.jallcom.2021.162287 URL |
[26] |
Zhou X M, Xia Z M, Tian Z M, Ma Y Y, Qu Y Q. Ultrathin porous Co3O4 nanoplates as highly efficient oxygen evolution catalysts[J]. J. Mater. Chem. A, 2015, 3(15):8107-8114.
doi: 10.1039/C4TA07214F URL |
[27] |
McCrory C C L, Jung S, Peters J C, Jaramillo T F. Bench-marking heterogeneous electrocatalysts for the oxygen evolution reaction[J]. J. Am. Chem. Soc., 2013, 135(45):16977-16987.
doi: 10.1021/ja407115p URL |
[28] |
Ma T Y, Dai S, Jaroniec M, Qiao S Z. Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes[J]. J. Am. Chem. Soc., 2014, 136(39):13925-13931.
doi: 10.1021/ja5082553 URL |
[29] |
Song K, Cho E, Kang Y M. Morphology and active-site engineering for stable round-trip efficiency Li-O2 batteries: A search for the most active catalytic site in Co3O4[J]. ACS Catal., 2015, 5(9):5116-5122.
doi: 10.1021/acscatal.5b01196 URL |
[30] |
Yao Y C, Hu S L, Chen W X, Huang Z Q, Wei W C, Yao T, Liu R R, Zang K T, Wang X Q, Wu G, Yuan W J, Yuan T W, Zhu B Q, Liu W, Li Z J, He D S, Xue Z G, Wang Y, Zheng X S, Dong J C, Chang C R, Chen Y X, Hong X, Luo J, Wei S Q, Li W X, Strasser P, Wu Y E, Li Y D. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis[J]. Nat. Catal., 2019, 2(4):304-313.
doi: 10.1038/s41929-019-0246-2 URL |
[1] | 丁明宇, 蒋文杰, 余天琦, 卓小燕, 覃晓静, 尹诗斌. CeO2电子调控FeNi纳米片大电流密度电解水催化剂[J]. 电化学(中英文), 2023, 29(5): 2208121-. |
[2] | 韦宗楠, 曹敏纳, 曹荣. 瓜环基金属纳米催化剂的电化学研究进展[J]. 电化学(中英文), 2023, 29(1): 2215008-. |
[3] | 郭丹丹, 俞红梅, 迟军, 邵志刚. 自支撑NiFe LDHs@Co-OH-CO3纳米棒阵列电极用于碱性阴离子交换膜电解水[J]. 电化学(中英文), 2022, 28(9): 2214003-. |
[4] | 李家欣, 冯立纲. 析氧反应铁镍基预催化剂的表界面调控与进展[J]. 电化学(中英文), 2022, 28(9): 2214001-. |
[5] | 甘团杰, 武建平, 刘石, 区文俊, 凌彬, 康雄武. 低结晶度AuPt-Ru/CNTs合金异质结作为高效多功能电催化剂[J]. 电化学(中英文), 2022, 28(8): 2201241-. |
[6] | Jafar Hussain Shah, 谢起贤, 匡智崇, 格日乐, 周雯慧, 刘朵绒, Alexandre I. Rykov, 李旭宁, 罗景山, 王军虎. 原位57Fe穆斯堡尔光谱技术及其在Ni-Fe基析氧反应电催化剂中的应用[J]. 电化学(中英文), 2022, 28(3): 2108541-. |
[7] | 魏家祺, 陈晓东, 李述周. 电化学合成纳米材料和小分子材料在电解制氢领域的应用[J]. 电化学(中英文), 2022, 28(10): 2214012-. |
[8] | 谢文富, 邵明飞. 碱性电解水高效制氢[J]. 电化学(中英文), 2022, 28(10): 2214008-. |
[9] | 黄健航, 董晓丽, 郭昭薇, 马元元, 王艳荣, 王永刚. 基于有机物电极的电化学能量存储与转化[J]. 电化学(中英文), 2020, 26(4): 486-494. |
[10] | 陈丹丹, 高学庆, 刘红飞, 张 伟, 曹 睿. 经由[Ni(en)3](SeO3)配合物电镀制备的硒化镍高效电催化水分解反应[J]. 电化学(中英文), 2019, 25(5): 553-561. |
[11] | 唐堂,江文杰,牛帅,胡劲松. 高性能析氧电催化剂的设计策略[J]. 电化学(中英文), 2018, 24(5): 409-426. |
[12] | 马元元,郭昭薇,王永刚,夏永姚. 电池电极反应的新应用:分步法电解制氢气[J]. 电化学(中英文), 2018, 24(5): 444-454. |
[13] | 赵丹丹,张楠,卜令正,邵琪,黄小青. 非贵金属电催化析氧催化剂的最新进展[J]. 电化学(中英文), 2018, 24(5): 455-465. |
[14] | 张 瑞,吕伟欣,雷立旭. H型电解池中CO2电化学还原的阳极电解液问题[J]. 电化学(中英文), 2017, 23(1): 72-79. |
[15] | 杨太来,董文燕,杨慧敏,张力,梁镇海*. 二元析氧催化剂CoxCr1-xO3/2的制备及性能研究[J]. 电化学(中英文), 2015, 21(2): 187-192. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||