电化学(中英文) ›› 2022, Vol. 28 ›› Issue (9): 2214002. doi: 10.13208/j.electrochem.2214002
所属专题: “电催化和燃料电池”专题文章
郭鸿波,#, 王亚妮,#, 郭凯, 雷海涛, 梁作中*(), 张学鹏*(), 曹睿*()
收稿日期:
2022-04-13
修回日期:
2022-05-17
出版日期:
2022-09-28
发布日期:
2022-05-25
Hong-Bo Guo,#, Ya-Ni Wang,#, Kai Guo, Hai-Tao Lei, Zuo-Zhong Liang*(), Xue-Peng Zhang*(), Rui Cao*()
Received:
2022-04-13
Revised:
2022-05-17
Published:
2022-09-28
Online:
2022-05-25
Contact:
*Liang Zuo-Zhong, Tel:(86)15529262976, E-mail: About author:
First author contact:# These authors contributed equally to this work.
摘要:
研究影响电催化氧还原反应活性的因素对于合理设计高效的氧还原反应催化剂至关重要。调节催化剂电子结构通常被用于精确调控电催化氧还原反应活性。然而, 该反应发生在液/气/固界面, 很少有报道调控分子催化剂的亲疏水性来提高其催化活性。在此, 我们报道了两种钴卟啉NO2-CoP(5,10,15,20-四(4-硝基苯基)钴卟啉)和5F-CoP(5,10,15,20-四(五氟苯基)钴卟啉)并研究了其电催化氧还原反应性能。通过同时调控meso-位取代基的电子结构和亲水性能, NO2-CoP显示出比5F-CoP更高的电催化氧还原反应活性, 其半波电位向阳极方向移动近60 mV。NO2-CoP比5F-CoP具有更好的亲水性。理论计算表明, NO2-CoP比5F-CoP更容易有效地与O2分子结合形成CoIII-O2·-。这项工作提供了一个简单而有效的策略, 通过使用吸电子和亲水取代基来提高钴卟啉的氧还原反应活性。该策略对于设计和开发其他用于电催化的分子催化剂体系也具有重要的启发意义。
郭鸿波, 王亚妮, 郭凯, 雷海涛, 梁作中, 张学鹏, 曹睿. 吸电子和亲水性Co-卟啉促进电催化氧还原反应的研究[J]. 电化学(中英文), 2022, 28(9): 2214002.
Hong-Bo Guo, Ya-Ni Wang, Kai Guo, Hai-Tao Lei, Zuo-Zhong Liang, Xue-Peng Zhang, Rui Cao. A Co Porphyrin with Electron-Withdrawing and Hydrophilic Substituents for Improved Electrocatalytic Oxygen Reduction[J]. Journal of Electrochemistry, 2022, 28(9): 2214002.
[1] |
Zaman S, Huang L, Douka A I, Yang H, You B, Xia B Y. Oxygen reduction electrocatalysts toward practical fuel cells: Progress and perspectives[J]. Angew. Chem. Int. Ed., 2021, 60(33): 17832-17852.
doi: 10.1002/anie.202016977 pmid: 33533165 |
[2] |
Zhao C X, Liu J N, Wang J, Ren D, Li B Q, Zhang Q. Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts[J]. Chem. Soc. Rev., 2021, 50(13): 7745-7778.
doi: 10.1039/D1CS00135C URL |
[3] |
Amanullah S, Das P K, Samanta S, Dey A. Tuning the thermodynamic onset potential of electrocatalytic O2 reduction reaction by synthetic iron-porphyrin complexes[J]. Chem. Commun., 2015, 51(49): 10010-10013.
doi: 10.1039/C5CC01938A URL |
[4] |
Kong J F, Cheng W L. Recent advances in the rational design of electrocatalysts towards the oxygen reduction reaction[J]. Chin. J. Catal., 2017, 38(6): 951-969.
doi: 10.1016/S1872-2067(17)62801-8 URL |
[5] |
Song P, Ruan M B, Liu J, Ran G J, Xu W L. Recent research progress for non-Pt-based oxygen reduction reaction electrocatalysts in fuel cell[J]. J. Electrochem., 2015, 21(2): 130-137.
doi: 10.13208/j.electrochem.141041 |
[6] |
Wang D, Pan X N, Yang P X, Li R P, Xu H, Li Y, Meng F, Zhang J Q, An M Z. Transition metal and nitrogen Co-doped carbon-based electrocatalysts for the oxygen reduction reaction: From active site insights to the rational design of precursors and structures[J]. ChemSusChem, 2021, 14(1): 33-55.
doi: 10.1002/cssc.202002137 pmid: 33078564 |
[7] |
Zhao T, Luo E G, Wang X, Ge J J, Liu C P, Xing W. Challenges in the activity and stability of Pt-based catalysts toward ORR[J]. J. Electrochem., 2020, 26(1): 84-95.
doi: 10.13208/j.electrochem.181205 |
[8] |
Kumar A, Zhang Y, Jia Y, Liu W, Sun X M. Redox chemistry of N4-Fe2+ in iron phthalocyanines for oxygen reduction reaction[J]. Chin. J. Catal., 2021, 42(8): 1404-1412.
doi: 10.1016/S1872-2067(20)63731-7 URL |
[9] |
Fukuzumi S, Lee Y M, Nam W. Recent progress in production and usage of hydrogen peroxide[J]. Chin. J Catal., 2021, 42(8): 1241-1252.
doi: 10.1016/S1872-2067(20)63767-6 URL |
[10] |
Dey S, Mondal B, Chatterjee S, Rana A, Amanullah S K, Dey A. Molecular electrocatalysts for the oxygen reduction reaction[J]. Nat. Rev. Chem., 2017, 1(12): 0098.
doi: 10.1038/s41570-017-0098 URL |
[11] |
Pegis M L, Wise C F, Martin D J, Mayer J M. Oxygen reduction by homogeneous molecular catalysts and electrocatalysts[J]. Chem. Rev., 2018, 118(5): 2340-2391.
doi: 10.1021/acs.chemrev.7b00542 pmid: 29406708 |
[12] |
Zhang W, Lai W Z, Cao R. Energy-related small molecule activation reactions: Oxygen reduction and hydrogen and oxygen evolution reactions catalyzed by porphyrin- and corrole-based systems[J]. Chem. Rev., 2017, 117(4): 3717-3797.
doi: 10.1021/acs.chemrev.6b00299 pmid: 28222601 |
[13] |
Passard G, Dogutan D K, Qiu M T, Costentin C, Nocera D G. Oxygen reduction reaction promoted by manganese porphyrins[J]. ACS Catal., 2018, 8(9): 8671-8679.
doi: 10.1021/acscatal.8b01944 URL |
[14] |
Zhao Y M, Yu G Q, Wang F F, Wei P J, Liu J G. Bioinspired transition-metal complexes as electrocatalysts for the oxygen reduction reaction[J]. Chem. Eur. J., 2019, 25(15): 3726-3739.
doi: 10.1002/chem.201803764 URL |
[15] |
Zhou Y, Xing Y F, Wen J, Ma H B, Wang F B, Xia X H. Axial ligands tailoring the ORR activity of cobalt porphyrin[J]. Sci. Bull., 2019, 64(16): 1158-1166.
doi: 10.1016/j.scib.2019.07.003 URL |
[16] |
Xie L S, Zhang X P, Zhao B, Li P, Qi J, Guo X N, Wang B, Lei H T, Zhang W, Apfel U P, Cao R. Enzyme-inspired iron porphyrins for improved electrocatalytic oxygen reduction and evolution reactions[J]. Angew. Chem. Int. Ed., 2021, 60(14): 7576-7581.
doi: 10.1002/anie.202015478 pmid: 33462971 |
[17] |
Lv H Y, Guo H B, Guo K, Lei H T, Zhang W, Zheng H Q, Liang Z Z, Cao R. Substituent position effect of Co porphyrin on oxygen electrocatalysis[J]. Chin. Chem. Lett., 2021, 32(9): 2841-2845.
doi: 10.1016/j.cclet.2021.02.032 URL |
[18] |
Lv B, Li X L, Guo K, Ma J, Wang Y Z, Lei H T, Wang F, Jin X T, Zhang Q X, Zhang W, Long R, Xiong Y J, Apfel U P, Cao R. Controlling oxygen reduction selectivity through steric effects: Electrocatalytic two-electron and four-electron oxygen reduction with cobalt porphyrin atropisomers[J]. Angew. Chem. Int. Ed., 2021, 60(23): 12742-12746.
doi: 10.1002/anie.202102523 pmid: 33742485 |
[19] |
Hong Y H, Han J W, Jung J, Nakagawa T, Lee Y M, Nam W, Fukuzumi S. Photocatalytic oxygenation reactions with a cobalt porphyrin complex using water as an oxygen source and dioxygen as an oxidant[J]. J. Am. Chem. Soc., 2019, 141(23): 9155-9159.
doi: 10.1021/jacs.9b02864 pmid: 31145595 |
[20] |
Li X L, Lei H T, Xie L S, Wang N, Zhang W, Cao R. Metalloporphyrins as catalytic models for studying hydrogen and oxygen evolution and oxygen reduction reactions[J]. Acc. Chem. Res., 2022, 55(6): 878-892.
doi: 10.1021/acs.accounts.1c00753 URL |
[21] |
Zhang R, Warren J J. Recent developments in metallopo-rphyrin electrocatalysts for reduction of small molecules: Strategies for managing electron and proton transfer reactions[J]. ChemSusChem, 2021, 14(1): 293-302.
doi: 10.1002/cssc.202001914 pmid: 33064354 |
[22] |
Mondal B, Sen P, Dey A. Proton reduction in the presence of oxygen by iron porphyrin enabled with 2nd sphere redox active ferrocenes[J]. Chin. J. Catal., 2021, 42(8): 1327-1331.
doi: 10.1016/S1872-2067(20)63761-5 URL |
[23] |
Grinstaff M W, Hill M G, Labinger J A, Gray H B. Mech-anism of catalytic oxygenation of alkanes by halogenated iron porphyrins[J]. Science, 1994, 264(5163): 1311-1313.
pmid: 8191283 |
[24] |
Zagal J H, Recio F J, Gutierrez C A, Zuniga C, Paez M A, Caro C A. Towards a unified way of comparing the electrocatalytic activity MN4 macrocyclic metal catalysts for O2 reduction on the basis of the reversible potential of the reaction[J]. Electrochem. Commun., 2014, 41: 24-26.
doi: 10.1016/j.elecom.2014.01.009 URL |
[25] |
Li Y L, Wang N, Lei H T, Li X L, Zheng H Q, Wang H Y, Zhang W, Cao R. Bioinspired N4-metallomacrocycles for electrocatalytic oxygen reduction reaction[J]. Coord. Chem. Rev., 2021, 442: 213996.
doi: 10.1016/j.ccr.2021.213996 URL |
[26] |
Masa J, Schuhmann W. Systematic selection of metalloporphyrin-based catalysts for oxygen reduction by modulation of the donor-acceptor intermolecular hardness[J]. Chem. Eur. J., 2013, 19(29): 9644-9654.
doi: 10.1002/chem.201203846 URL |
[27] |
Zhao C X, Li B Q, Liu J N, Huang J Q, Zhang Q. Transition metal coordinated framework porphyrin for electrocatalytic oxygen reduction[J]. Chin. Chem. Lett., 2019, 30(4): 911-914.
doi: 10.1016/j.cclet.2019.03.026 URL |
[28] |
Wang Y H, Mondal B, Stahl S S. Molecular cobalt catalysts for O2 reduction to H2O2: Benchmarking catalyst performance via rate-overpotential correlations[J]. ACS Catal., 2020, 10(20): 12031-12039.
doi: 10.1021/acscatal.0c02197 URL |
[29] |
Lei H T, Zhang Q X, Wang Y B, Gao Y M, Wang Y Z, Liang Z Z, Zhang W, Cao R. Significantly boosted oxygen electrocatalysis with cooperation between cobalt and iron porphyrins dagger[J]. Dalton Trans., 2021, 50(15): 5120-5123.
doi: 10.1039/d1dt00441g pmid: 33881086 |
[30] |
Liu Y J, Zhou G J, Zhang Z Y, Lei H T, Yao Z, Li J F, Lin J, Cao R. Significantly improved electrocatalytic oxygen reduction by an asymmetrical pacman dinuclear cobalt(II) porphyrin-porphyrin dyad[J]. Chem. Sci., 2020, 11(1): 87-96.
doi: 10.1039/c9sc05041h pmid: 32110360 |
[31] |
Oldacre A N, Friedman A E, Cook T R. A self-assembled cofacial cobalt porphyrin prism for oxygen reduction catalysis[J]. J. Am. Chem. Soc., 2017, 139(4): 1424-1427.
doi: 10.1021/jacs.6b12404 pmid: 28102678 |
[32] | Zhang W, Shaikh A U, Tsui E Y, Swager T M. Cobalt porphyrin functionalized carbon nanotubes for oxygen reduction[J]. Chem. Mater., 2009, 21(14): 3234-3241. |
[33] |
Liang Z Z, Guo H B, Zhou G J, Guo K, Wang B, Lei H T, Zhang W, Zheng H Q, Apfel U P, Cao R. Metal-organic-framework-supported molecular electrocatalysis for the oxygen reduction reaction[J]. Angew. Chem. Int. Ed., 2021, 60(15): 8472-8476.
doi: 10.1002/anie.202016024 pmid: 33484092 |
[34] |
Crawley M R, Zhang D Y, Oldacre A N, Beavers C M, Friedman A E, Cook T R. Tuning the reactivity of cofacial porphyrin prisms for oxygen reduction using modular building blocks[J]. J. Am. Chem. Soc., 2021, 143(2): 1098-1106.
doi: 10.1021/jacs.0c11895 pmid: 33377787 |
[35] |
Wan H, Jensen A W, Escudero-Escribano M, Rossmeisl J. Insights in the oxygen reduction reaction: From metallic electrocatalysts to diporphyrins[J]. ACS Catal., 2020, 10(11): 5979-5989.
doi: 10.1021/acscatal.0c01085 URL |
[36] |
Sun B, Ou Z P, Meng D Y, Fang Y Y, Song Y, Zhu W H, Solntsev P V, Nemykin V N, Kadish K M. Electrochemistry and catalytic properties for dioxygen reduction using ferrocene-substituted cobalt porphyrins[J]. Inorg. Chem., 2014, 53(16): 8600-8609.
doi: 10.1021/ic501210t pmid: 25068447 |
[37] |
Zhang Q X, Wang Y B, Wang Y Z, Yang S J, Wu X, Lv B, Wang N, Gao Y M, Xu X R, Lei H T, Cao R. Electropolymerization of cobalt porphyrins and corroles for the oxygen evolution reaction[J]. Chin. Chem. Lett., 2021, 32(12): 3807-3810.
doi: 10.1016/j.cclet.2021.04.048 URL |
[38] |
Song E H, Shi C N, Anson F C. Comparison of the behavior of several cobalt porphyrins as electrocatalysts for the reduction of O2 at graphite electrodes[J]. Langmuir, 1998, 14(15): 4315-4321.
doi: 10.1021/la980084d URL |
[39] |
Xie L S, Li X L, Wang B, Meng J, Lei H T, Zhang W, Cao R. Molecular engineering of a 3D self-supported electrode for oxygen electrocatalysis in neutral media[J]. Angew. Chem. Int. Ed., 2019, 58(52): 18883-18887.
doi: 10.1002/anie.201911441 pmid: 31626385 |
[40] |
Han J X, Wang N, Li X L, Zhang W, Cao R. Improving electrocatalytic oxygen reduction activity and selectivity with a cobalt corrole appended with multiple positively charged proton relay sites[J]. J. Phys. Chem. C, 2021, 125(45): 24805-24813.
doi: 10.1021/acs.jpcc.1c07578 URL |
[41] |
Sonkar P K, Prakash K, Yadav M, Ganesan V, Sankar M, Gupta R, Yadav D K. Co(II)-porphyrin-decorated carbon nanotubes as catalysts for oxygen reduction reactions: An approach for fuel cell improvement[J]. J. Mater. Chem. A, 2017, 5(13): 6263-6276.
doi: 10.1039/C6TA10482G URL |
[42] |
McGuire R, Dogutan D K, Teets T S, Suntivich J, Shao-Horn Y, Nocera D G. Oxygen reduction reactivity of cobalt(II) hangman porphyrins[J]. Chem. Sci., 2010, 1(3): 411-414.
doi: 10.1039/c0sc00281j URL |
[43] |
Liang Z, Wang H Y, Zheng H Q, Zhang W, Cao R. Porphyrin-based frameworks for oxygen electrocatalysis and catalytic reduction of carbon dioxide[J]. Chem. Soc. Rev., 2021, 50(4): 2540-2581.
doi: 10.1039/d0cs01482f pmid: 33475099 |
[44] |
Qin H N, Wang Y Z, Wang B, Duan X G, Lei H T, Zhang X P, Zheng H Q, Zhang W, Cao R. Cobalt porphyrins supported on carbon nanotubes as model catalysts of metal-N4/C sites for oxygen electrocatalysis[J]. J. Energy Chem., 2021, 53: 77-81.
doi: 10.1016/j.jechem.2020.05.015 URL |
[45] |
Xu W W, Lu Z Y, Sun X M, Jiang L, Duan X. Superwetting electrodes for gas-involving electrocatalysis[J]. Acc. Chem. Res., 2018, 51(7): 1590-1598.
doi: 10.1021/acs.accounts.8b00070 URL |
[46] |
Longhi M, Cova C, Pargoletti E, Coduri M, Santangelo S, Patanè S, Ditaranto N, Cioffi N, Facibeni A, Scavini M. Synergistic effects of active sites’ nature and hydrophilicity on the oxygen reduction reaction activity of Pt-free catalysts[J]. Nanomaterials, 2018, 8(9): 643.
doi: 10.3390/nano8090643 URL |
[47] |
Lei H T, Wang Y B, Zhang Q X, Cao R. First-row transition metal porphyrins for electrocatalytic hydrogen evolution — a SPP/JPP Young Investigator Award paper[J]. J. Porphyr. Phthalocyanines, 2020, 24(11-12): 1361-1371.
doi: 10.1142/S1088424620500157 URL |
[48] | Brüker AXS. APEX2 V2009. |
[49] | Sheldrick G. SADABS—Brüker AXS area detector scaling and absorption, version 2008/1. University of Göttingen, Germany, 2008. |
[50] |
Sheldrick G M. Phase annealing in SHELX-90: Direct methods for larger structures[J]. Acta Cryst., 1990, 46: 467-473.
doi: 10.1107/S0108767390000277 URL |
[51] | Sheldrick G M. Crystal structure refinement with SHELXL[J]. Acta Cryst., 2015, 71: 3-8. |
[52] |
Xia B Y, Yan Y, Li N, Wu H B, Lou X W, Wang X. A metal-organic framework-derived bifunctional oxygen electrocatalyst[J]. Nat. Energy, 2016, 1: 15006.
doi: 10.1038/nenergy.2015.6 URL |
[53] | Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Fox D J. Gaussian16 Revision A. 03 (Wallingford, Ct: Gaussian Inc.), 2016. |
[54] |
Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory[J]. J. Comp. Chem., 2011, 32(7): 1456-1465.
doi: 10.1002/jcc.21759 URL |
[55] |
Becke A D. Density-functional exchange-energy approximation with correct asymptotic behavior[J]. Phys. Rev. A, 1988, 38(6): 3098-3100.
doi: 10.1103/PhysRevA.38.3098 URL |
[56] |
Lee C T, Yang W T, Parr R G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density[J]. Phys. Rev. B, 1988, 37(2): 785-789.
pmid: 9944570 |
[57] |
Becke A D. Density-functional thermochemistry. III. The role of exact exchange[J]. J. Chem. Phys., 1993, 98(7): 5648-5652.
doi: 10.1063/1.464913 URL |
[58] |
Weigend F, Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy[J]. Phys. Chem. Chem. Phys., 2005, 7(18): 3297-3305.
pmid: 16240044 |
[59] |
Tomasi J, Mennucci B, Cammi R. Quantum mechanical continuum solvation models[J]. Chem. Rev., 2005, 105(8): 2999-3093.
doi: 10.1021/cr9904009 pmid: 16092826 |
[60] |
Reed A E, Curtiss L A, Weinhold F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint[J]. Chem. Rev., 1988, 88(6): 899-926.
doi: 10.1021/cr00088a005 URL |
[1] | 郑天龙, 欧明玉, 徐松, 毛信表, 王释一, 和庆钢. 一体式可再生燃料电池双功能氧催化剂的研究进展[J]. 电化学(中英文), 2023, 29(7): 2205301-. |
[2] | 张衡, 夏力行, 姜珊, 王福芝, 谭占鳌. 氮掺杂石墨毡对水系醌基氧化还原液流电池性能的影响[J]. 电化学(中英文), 2023, 29(12): 2203231-. |
[3] | 刘思淼, 周景娇, 季世军, 文钟晟. FeNi-CoP/NC双功能催化剂的制备及电催化性能研究[J]. 电化学(中英文), 2023, 29(10): 211118-. |
[4] | 张天恩, 颜雅妮, 张俊明, 瞿希铭, 黎燕荣, 姜艳霞. 调控Pt3Zn合金化程度改善酸性氧还原活性与稳定性[J]. 电化学(中英文), 2022, 28(4): 2106091-. |
[5] | 冯雅辰, 王翔, 王宇琪, 严会娟, 王栋. 电催化氧还原反应的原位表征[J]. 电化学(中英文), 2022, 28(3): 2108531-. |
[6] | 孙雪, 宋亚杰, 李仁龙, 王家钧. 无序Ru-O构型对电化学析氢催化性能研究[J]. 电化学(中英文), 2022, 28(10): 2214011-. |
[7] | 袁会芳, 张越, 翟兴吾, 胡立兵, 葛桂贤, 王刚, 于锋, 代斌. 氮掺杂碳原位锚定铜纳米颗粒用于高效氧还原反应催化剂[J]. 电化学(中英文), 2021, 27(6): 671-680. |
[8] | 林华, 吴艺津, 李君涛, 周尧. 一锅法制备Fe2O3@Fe-N-C氧还原电催化剂及其锌-空气电池的性能研究[J]. 电化学(中英文), 2021, 27(4): 366-376. |
[9] | 李文杰, 田东旭, 杜红, 燕希强. ORR催化剂Nim@Pt1Aun-m-1 (n = 19, 38, 55, 79; m = 1, 6, 13, 19)的密度泛函研究[J]. 电化学(中英文), 2021, 27(4): 357-365. |
[10] | 吴志鹏, 钟传建. 钯基氧还原和乙醇氧化反应电催化剂:关于结构和机理研究的一些近期见解[J]. 电化学(中英文), 2021, 27(2): 144-156. |
[11] | 徐明俊, 刘杰, 葛君杰, 刘长鹏, 邢巍. 长春应化所金属氮碳氧还原催化剂的研究进展[J]. 电化学(中英文), 2020, 26(4): 464-473. |
[12] | 徐能能, 乔锦丽. 锌-空气电池双功能催化剂研究进展[J]. 电化学(中英文), 2020, 26(4): 531-562. |
[13] | 杨智, 沈亚云, 周娥, 魏成玲, 秦好丽, 田娟. 前驱体中N含量对FeN/C催化剂氧还原活性的影响研究[J]. 电化学(中英文), 2020, 26(1): 130-135. |
[14] | 梁 栋, 房恒义, 姚 硕, 于洁玫, 张昭良, 姜占坤, 高学平, 黄太仲. 不同结构及氮掺杂NiO/rGO氧还原催化剂的制备与性能研究[J]. 电化学(中英文), 2019, 25(5): 589-600. |
[15] | 张利华, 陈峻峰, 黄皖唐, 胡勇有, 程建华, 陈元彩. Cu-bipy-BTC衍生碳基材料的制备及其氧还原电催化性能[J]. 电化学(中英文), 2019, 25(4): 511-521. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||