电化学(中英文) ›› 2022, Vol. 28 ›› Issue (2): 2108471. doi: 10.13208/j.electrochem.210847
所属专题: “理论计算模拟”专题文章; iSAIEC 2023; “AI for Electrochemistry”专题文章
收稿日期:
2021-10-26
修回日期:
2021-12-07
出版日期:
2022-02-28
发布日期:
2021-12-18
Lu-Lu Zhang1,#, Chen-Kun Li2,#, Jun Huang3,*()
Received:
2021-10-26
Revised:
2021-12-07
Published:
2022-02-28
Online:
2021-12-18
Contact:
*Tel: (+49)15906819204, E-mail:
About author:
#Equal contribution.
摘要:
本文定位在一篇电化学双电层(EDL)理论建模方面入门级文章。我们首先简要介绍了EDL的基本特征,简述了EDL理论建模的发展历史,特别是D.C. Grahame之后近几十年的发展历史。然后,我们依次介绍了平衡状态和动态下不同复杂度的EDL模型。作为一篇入门级文章,我们尽可能详细地阐释理论模型的物理图像、假设、数学推导、形式分析、数值分析,并附上Matlab仿真代码。平衡状态下的模型包括Gouy-Chapman-Stern(GCS)模型,Bikerman-Poisson-Boltzmann(BPB)模型,和非对称离子尺寸模型。我们强调GCS模型和BPB模型在处理离子有限尺寸上存在一个微妙的不同。GCS模型通过人为引入Helmholtz平面来考虑离子有限尺寸,但在Helmholtz平面内及弥散层内却依然采用没有考虑离子尺寸效应的Poisson-Boltzmann理论,因而此处的离子浓度可以无限大。与之不同,BPB模型通过格子气体方法,能够自洽描述离子有限尺寸效应。不同以往直接采用Poisson-Nernst-Planck方程描述EDL动态行为,我们从EDL的巨势出发,运用基本的泛函分析方法,推导了一个考虑离子有限尺寸的EDL动态模型。这一理论方法拓展性好。读者可以根据研究对象的需要,建立不同复杂度的EDL动态模型。最后,我们基于EDL动态模型,推导了EDL的电化学阻抗谱理论模型,以试图向读者展示如何从一个时域物理模型出发,推导相应的阻抗谱物理模型。读者若想要踏进理论电化学这个美丽的花园,根据我们自己学习和研究的经验,一个可行的方式是拿起纸和笔来开始推导本文所介绍的这些模型。
张露露, 李琛坤, 黄俊. 平衡、非平衡、交流状态下电化学双电层建模的初学者指南[J]. 电化学(中英文), 2022, 28(2): 2108471.
Lu-Lu Zhang, Chen-Kun Li, Jun Huang. A Beginners’ Guide to Modelling of Electric Double Layer under Equilibrium, Nonequilibrium and AC Conditions[J]. Journal of Electrochemistry, 2022, 28(2): 2108471.
Figure 2.
Surface charging relation: (A) ϕM - ϕS < χ, (B) ϕM - ϕS = χ, (C) ϕM - ϕS > χ, and (D) with an additional potential drop Δχ at the surface due to chemisorption-induced surface dipole. In the presence of chemisorption, σM contains not only the excess charge on the electrode surface, but also the net charged carried on the charged adsorbates. (color on line)
Figure 4.
Typical results of the GCS model, including the spatial distributions of (A) the electric potential and (B) the cation concentration, and the relationships between (C) the surface charge density and (D) the differential double-layer capacitance with the electrode potential. The inset in (A) illustrates the electric potential distribution within 2 nm near the electrode. The parameters for calculation are listed in Table 1. Matlab script of this model is provided in the supporting information. (color on line)
Figure 5.
Schematic illustration of the comparison between the GCS model and the BPB model. For the GCS model, the number density of particles at the HP and in the diffuse layer can be infinite for the point charge assumption. Correspondingly, we depict ions with dotted lines in the GCS model, c.f. solid lines for ions of finite size in the BPB model. (color on line)
Figure 6.
Typical results of the BPB model, including the spatial distributions of the electric potential and the anion concentration at a series of electrode potential in (A) and (B), and the relationships between (C) the surface charge density (D) the differential double-layer capacitance with the electrode potential. For the purpose of comparison, the results of the GCS model are shown in the black solid lines. The parameters for calculation are listed in Table 1. Matlab script of this model is provided in the supporting information. (color on line)
Figure 7.
Typical results of the BPB model with the asymmetric size effect, including the relationships between (A) the surface charge density and (B) the differential double-layer capacitance with the electrode potential. The results of the symmetric BPB model are shown in the blue circles, as γ+ = γ- = 1. The results at γ+ = 1 and γ- = 3 are shown in the red solid lines, while the results at γ+ =3 and γ- = 1 are shown in the yellow solid lines. The grey circles represent the results at γ+ = γ- = 3. The parameters for calculation are listed in Table 1. Matlab script of this model is provided in the supporting information. (color on line)
Table 1
List of the Model Parameters
Symbol (unit) | Value | Physical significance | Note |
---|---|---|---|
Constants | |||
kB(J·K-1) | 1.381 × 10-23 | Boltzmann constant | |
T(K) | 298.15 | Absolute temperature | |
h(J·s) | 6.626 × 10-34 | Planck constant | |
e0(C) | 1.602 × 10-19 | Elementary charge | |
NA(mol-1) | 6.022 × 1023 | Avogadro constant | |
$\epsilon_{0}$(F·m-1) | 8.854 × 10-12 | Vacuum permittivity | |
F(C·mol-1) | 96485 | Faraday constant | |
R(J·K-1·mol-1) | 8.314 | Gas constant | |
Solution properties | |||
$\epsilon_{HP}$(F·m-1) | 6$\epsilon_{0}$ | Dielectric permittivity of the space between the electrode and the HP | Ref [56] |
$\epsilon_{S}$(F·m-1) | 78.5$\epsilon_{0}$ | Bulk dielectric permittivity of the water solvent medium | |
δHP(nm) | 0.4125 | Distance from the electrode to the HP, calculated by 1.5 d with the diameter of water d = 0.275 nm. | |
D(m2·s-1) | 1 × 10-9 | Diffusion coefficient | |
cb(mol·m-3) | 1 | Concentration of total cations (anions) in the bulk solution | |
cA0,cB0,cH+0(mol·m-3) | 1 | Concentrations of B, A and H+ under standard conditions | |
Electrode properties | |||
ϕpzc(VSHE) | 0.3 | Potential of zero charge | Estimated |
aM(Å) | 3.5 | Lattice constant of the electrode | Estimated |
nM (m-2) | 4.713 × 1018 | Areal number density of M(111), calculated by ($\sqrt{3}$aM2)-1 | |
Reaction properties | |||
E00(VSHE) | 0.6 | Equilibrium potential of the reaction at standard state | Estimated |
ΔGa00(eV) | 0.4 | Activation energy of the reaction at standard equilibrium state | Estimated |
Figure 8.
Typical results of the PNP theory, including the current density varying with the electrode potential, and the distributions of the concentration of A at 0.1 s, 1 s and 5 s at 0.4 VSHE. The spatial range for calculation is 100 μm from the HP, and the time duration for calculation is 5 s. The parameters for calculation are listed in Table 1. Matlab script of this model is provided in the supporting information.
Figure 9.
ECM in the electrochemical system. Cdl is an interfacial capacitance, associated with the double-layer charging process, Rct is a resistance, associated with the charge transfer reactions process, W describes the diffusion of species involved in the charge transfer reactions, Rs is the electrolyte solution resistance, associated with the migration process in the bulk solution.
Figure 10.
(A) A simple RC electrical circuit; (B) The Nyquist plot; (C) The Bode plot of amplitude; (D) The Bode plot of phase angle. The parameters used for calculation are as follows, R0 = R = 1 Ω, C = 0.5 F, and the frequency range: 1 × 10-4 Hz to 1 × 104 Hz. Matlab script of this model is provided in the supporting information. (color on line)pedance amplitude and the frequency is shown in Figure 10(C). At very low frequencies, the amplitude of im-pedance is equal to R + R0. At very high frequencies, the amplitude of impedance approaches R0. Figure 10(D) shows how the phase angle varies with frequency. There is only a characteristic frequency at 1/RC which corresponds to the peak in the Nyquist plot. Notably, the peak frequency in the Bode plot deviates from 1/RC[57].
Figure 11.
Nyquist plots of simplified impedance in different frequency ranges. (A) Full frequency range, 1×106 Hz ~ 1×10-4 Hz; (B) ωnd > ωctnd, 1×106 Hz ~ 1×105 Hz; (C) ωdnd < ωnd < ωctnd, 1×104 Hz ~ 10 Hz; (D) ωnd < ωdnd, 1 Hz ~ 1×10-4 Hz. Parameters are c0 = 100 mol·m-3, k0 = 3×10-4 mol·m-2·s-1, D = 1×10-10 m2·s-1. Matlab script of this model is provided in the supporting information. (color on line)
Figure 12.
Comparison between the AFT-calculated and the analytical impedance expressed in Eq. (127). Parameters used in calculation are as follows, c0 = 100 mol·m-3, k0 = 4.45× 10-5 mol·m-2·s-1, D = 3.2×10-11 m2·s-1, frequency range: 4.22×10-4 ~ 5×105 Hz, sampling frequency: 100*(excitation frequency), sampling duration: the reciprocal of sampling frequency. Matlab script of this model is provided in the supporting information.
[1] |
Huang J, Chen S L, Eikerling M. Grand-canonical model of electrochemical double layers from a hybrid density-potential functional[J]. J. Chem. Theory Comput., 2021, 17(4):2417-2430.
doi: 10.1021/acs.jctc.1c00098 URL |
[2] | Trasatti S, Lust E. The potential of zero charge, in Modern aspects of electrochemistry[M]. White R E, Bockris J O’ M, Conway B E, Editors, 1999, Springer US: Boston, MA. 1-215. |
[3] |
Schmickler W, Guidelli R. The partial charge transfer[J]. Electrochim. Acta, 2014, 127:489-505.
doi: 10.1016/j.electacta.2014.02.057 URL |
[4] |
Huang J, Malek A, Zhang J B, Eikerling M. Non-monotonic surface charging behavior of platinum: A paradigm change[J]. J. Phys. Chem. C, 2016, 120(25):13587-13595.
doi: 10.1021/acs.jpcc.6b03930 URL |
[5] |
Huang J, Zhou T, Zhang J B, Eikerling M. Double layer of platinum electrodes: Non-monotonic surface charging phenomena and negative double layer capacitance[J]. J. Chem. Phys., 2018, 148(4):044704.
doi: 10.1063/1.5010999 URL |
[6] |
Helmholtz H V. Studien über electrische grenzschichten[J]. Ann. Phys., 1879, 243(7):337-382.
doi: 10.1002/(ISSN)1521-38889 URL |
[7] |
Chapman D L, Li. A contribution to the theory of electrocapillarity[J]. Philos. Mag., 1913, 25(148):475-481.
doi: 10.1080/14786440408634187 URL |
[8] |
Gouy G. Sur la constitution de la charge electrique a la surface d’un electrolyte.[J]. J. Phys. Theor. Appl., 1910, 9(1):457-468.
doi: 10.1051/jphystap:019100090045700 URL |
[9] | Stern O. Zur theorie der elektrolytischen doppelschicht[J]. Ber. Bunsenges. Phys. Chem., 1924, 30(21-22):508-516. |
[10] | Bikerman J J. Xxxix. Structure and capacity of electrical double layer[J]. Lond. Edinb. Dubl. Phil. Mag., 1942, 33(220):384-397. |
[11] |
Grahame D C. The electrical double layer and the theory of electrocapillarity[J]. Chem. Rev., 1947, 41(3):441-501.
doi: 10.1021/cr60130a002 URL |
[12] |
Lobenz W, Salie G. Potentialabhängigkeit und ladungsübergangskoeffizienten der tl/tl+-reaktion[J]. Z. Phys. Chem., 1961, 29(5):408-412.
doi: 10.1524/zpch.1961.29.5_6.408 URL |
[13] |
Grahame D C. Components of charge and potential in the non-diffuse region of the electrical double layer: Potassium iodide solutions in contact with mercury at 25°1[J]. J. Am. Chem. Soc., 1958, 80(16):4201-4210.
doi: 10.1021/ja01549a022 URL |
[14] |
Mott N F, Watts-Tobin R J. The interface between a metal and an electrolyte[J]. Electrochim. Acta, 1961, 4(2):79-107.
doi: 10.1016/0013-4686(61)80009-1 URL |
[15] |
Mott N F, Parsons R, Watts-Tobin R J. The capacity of a mercury electrode in electrolytic solution[J]. Philos. Mag., 1962, 7(75):483-493.
doi: 10.1080/14786436208212180 URL |
[16] |
Watts-tobin R J. The interface between a metal and an electrolytic solution[J]. Philos. Mag., 1961, 6(61):133-153.
doi: 10.1080/14786436108238358 URL |
[17] |
Schmickler W. Electronic effects in the electric double layer[J]. Chem. Rev., 1996, 96(8):3177-3200.
pmid: 11848857 |
[18] |
Guidelli R, Schmickler W. Recent developments in models for the interface between a metal and an aqueous solution[J]. Electrochim. Acta, 2000. 45(15):2317-2338.
doi: 10.1016/S0013-4686(00)00335-2 URL |
[19] |
Trasatti S. Effect of the nature of the metal on the dielectric properties of polar liquids at the interface with electrodes. A phenomenological approach[J]. J. Electroanal. Chem. Interfacial Electrochem., 1981, 123(1):121-139.
doi: 10.1016/S0022-0728(81)80047-2 URL |
[20] |
Badiali J P, Rosinberg M L, Vericat F, Blum L. A microscopic model for the liquid metal-ionic solution interface[J]. J. Electro-Anal. Chem., 1983, 158(2):253-267.
doi: 10.1016/S0022-0728(83)80611-1 URL |
[21] |
Kornyshev A A. Metal electrons in the double layer theory[J]. Electrochim. Acta, 1989, 34(12):1829-1847.
doi: 10.1016/0013-4686(89)85070-4 URL |
[22] |
Schmickler W. A jellium-dipole model for the double layer[J]. J. Electroanal. Chem., 1983, 150(1):19-24.
doi: 10.1016/S0022-0728(83)80185-5 URL |
[23] | Lundqvist S, March N H. Theory of the inhomogeneous electron gas[M]//Physics of solids and liquids, Springer Science & Business Media. XIV, Plenum Press, New York, 1983: 396. |
[24] |
Price D L, Halley J W. Molecular dynamics, density functional theory of the metal-electrolyte interface[J]. J. Chem. Phys., 1995, 102(16):6603-6612.
doi: 10.1063/1.469376 URL |
[25] |
Otani M, ugino O. First-principles calculations of charged surfaces and interfaces: A plane-wave nonrepeated slab approach[J]. Phys. Rev. B, 2006, 73(11):115407.
doi: 10.1103/PhysRevB.73.115407 URL |
[26] |
Petrosyan S A, Briere J F, Roundy D, Arias T A. Joint density-functional theory for electronic structure of solvated systems[J]. Phys. Rev. B, 2007, 75(20):205105.
doi: 10.1103/PhysRevB.75.205105 URL |
[27] |
Letchworth-Weaver K, Arias T A. Joint density functional theory of the electrode-electrolyte interface: Application to fixed electrode potentials, interfacial capacitances, and potentials of zero charge[J]. Phys. Rev. B, 2012, 86(7):075140.
doi: 10.1103/PhysRevB.86.075140 URL |
[28] |
Sundararaman R, Goddard W A, Arias T A. Grand canonical electronic density-functional theory: Algorithms and applications to electrochemistry[J]. J. Chem. Phys., 2017, 146(11):114104.
doi: 10.1063/1.4978411 URL |
[29] |
Jinnouchi R, Anderson A B. Electronic structure calculations of liquid-solid interfaces: Combination of density functional theory and modified Poisson-Boltzmann theory[J]. Phys. Rev. B, 2008, 77(24):245417.
doi: 10.1103/PhysRevB.77.245417 URL |
[30] |
Mathew K, Sundararaman R, Letchworth-Weaver K, Arias T A, Hennig R G. Implicit solvation model for densityfunctional study of nanocrystal surfaces and reaction pathways[J]. J. Chem. Phys., 2014, 140(8):084106.
doi: 10.1063/1.4865107 URL |
[31] |
Mathew K, Kolluru V S C, Mula S, Steinmann S N, Hennig R G. Implicit self-consistent electrolyte model in plane-wave density-functional theory[J]. J. Chem. Phys., 2019, 151(23):234101.
doi: 10.1063/1.5132354 URL |
[32] |
Nishihara S, Otani M. Hybrid solvation models for bulk, interface, and membrane: Reference interaction site methods coupled with density functional theory[J]. Phys. Rev. B, 2017, 96(11):115429.
doi: 10.1103/PhysRevB.96.115429 URL |
[33] |
Nattino F, Truscott M, Marzari N, Andreussi O. Continuum models of the electrochemical diffuse layer in electronicstructure calculations[J]. J. Chem. Phys., 2018, 150(4):041722.
doi: 10.1063/1.5054588 URL |
[34] |
Hörmann N G, Andreussi O, Marzari N. Grand canonical simulations of electrochemical interfaces in implicit solvation models[J]. J. Chem. Phys., 2019, 150(4):041730.
doi: 10.1063/1.5054580 URL |
[35] |
Melander M M, Kuisma M J, Christensen T E K, Honkala K. Grand-canonical approach to density functional theory of electrocatalytic systems: Thermodynamics of solid-liquid interfaces at constant ion and electrode potentials[J]. J. Chem. Phys., 2018, 150(4):041706.
doi: 10.1063/1.5047829 URL |
[36] |
Le J B, Iannuzzi M, Cuesta A, Cheng J. Determining potentials of zero charge of metal electrodes versus the standard hydrogen electrode from density-functional-theory-based molecular dynamics[J]. Phys. Rev. Lett., 2017, 119(1):016801.
doi: 10.1103/PhysRevLett.119.016801 URL |
[37] |
Sakong S, Groβ A. The electric double layer at metalwater interfaces revisited based on a charge polarization scheme[J]. J. Chem. Phys., 2018, 149(8):084705.
doi: 10.1063/1.5040056 URL |
[38] |
Sakong S, Groβ A. Water structures on a Pt(111) electrode from ab initio molecular dynamic simulations for a variety of electro-chemical conditions[J]. Phys. Chem. Chem. Phys., 2020, 22(19):10431-10437.
doi: 10.1039/c9cp06584a pmid: 31976502 |
[39] |
Le J B, Chen A, Li L, Xiong J F, Lan J G, Liu Y P, Iannuzzi M, Cheng J. Modeling electrified Pt(111)-Had/water interfaces from ab initio molecular dynamics[J]. JACS Au, 2021, 1(5):569-577.
doi: 10.1021/jacsau.1c00108 URL |
[40] |
Huang J, Li P, Chen S L. Potential of zero charge and surface charging relation of metal-solution interphases from a constant-poten-tial Jellium-Poisson-Boltzmann model[J]. Phys. Rev. B, 2020, 101(12):125422.
doi: 10.1103/PhysRevB.101.125422 URL |
[41] |
Huang J. Hybrid density-potential functional theory of electric double layers[J]. Electrochim. Acta, 2021, 389:138720.
doi: 10.1016/j.electacta.2021.138720 URL |
[42] | Karasiev V V, Trickey S B. Chapter nine-frank discussion of the status of ground-state orbital-free DFT[M]//Advances in quantum chemistry. Sabin J R, Cabrera-Trujillo R, Editors, Academic Press, 2015: 221-245. |
[43] | Wang Y A, Carter E A. Orbital-free kinetic-energy density functional theory, in Theoretical methods in condensed phase chemistry[M]. Schwartz S D, Editor, Springer Netherlands: Dordrecht, 2002: 117-184. |
[44] |
Gavini V, Bhattacharya K, Ortiz M. Quasi-continuum orbital-free density-functional theory: A route to multi-million atom non-periodic DFT calculation[J]. J. Mech. Phys. Solids, 2007, 55(4):697-718.
doi: 10.1016/j.jmps.2007.01.012 URL |
[45] |
Nightingale E R. Phenomenological theory of ion solvation. Effective radii of hydrated ions[J]. J. Phys. Chem., 1959, 63(9):1381-1387.
doi: 10.1021/j150579a011 URL |
[46] |
Bazant M Z, Kilic M S, Storey B D, Ajdari A. Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions[J]. Adv. Colloid Interface, 2009, 152(1-2):48-88.
doi: 10.1016/j.cis.2009.10.001 URL |
[47] |
Kornyshev A A. Double-layer in ionic liquids: Paradigm change?[J]. J. Phys. Chem. B, 2007, 111(20):5545-5557.
doi: 10.1021/jp067857o URL |
[48] |
Zhang Y F, Huang J. Treatment of ion-size asymmetry in lattice-gas models for electrical double layer[J]. J. Phys. Chem. C, 2018, 122(50):28652-28664.
doi: 10.1021/acs.jpcc.8b08298 URL |
[49] |
Zhang L L, Cai J, Chen Y X, Huang J. Modelling electrocatalytic reactions with a concerted treatment of multistep electron transfer kinetics and local reaction conditions[J]. J. Phys. Condens. Mat., 2021, 33(50):504002.
doi: 10.1088/1361-648X/ac26fb URL |
[50] |
Zhang Z M, Gao Y, Chen S L, Huang J. Understanding dynamics of electrochemical double layers via a modified concentrated solution theory[J]. J. Electrochem. Soc., 2019. 167(1):013519.
doi: 10.1149/2.0192001JES URL |
[51] |
Budkov Y A. Nonlocal statistical field theory of dipolar particles in electrolyte solutions[J]. J. Phys. Condens. Mat., 2018, 30(34):344001.
doi: 10.1088/1361-648X/aad3ee URL |
[52] |
Budkov Y A. Statistical field theory of ion-molecular solutions[J]. Phys. Chem. Chem. Phys., 2020, 22(26):14756-14772.
doi: 10.1039/d0cp02432e pmid: 32578625 |
[53] |
Huang J. Confinement induced dilution: Electrostatic screening length anomaly in concentrated electrolytes in confined space[J]. J. Phys. Chem. C, 2018, 122(6):3428-3433.
doi: 10.1021/acs.jpcc.7b11093 URL |
[54] |
Gao Y, Huang J, Liu Y W, Yan J W, Mao B W, Chen S L. Ion-vacancy coupled charge transfer model for ion transport in con-centrated solutions[J]. Sci. China. Chem., 2019, 62(4):515-520.
doi: 10.1007/s11426-018-9423-8 |
[55] | Bard A J, Faulkner L R. Electrochemical methods: Fundamentals and applications[M]. 2nd ed. Russ. J. Electrochem., New York: Wiley, 2002, 38:1364-1365. |
[56] | Bockris J O’ m, Devanathan M A V, Müller K. On the structure of charged interfaces[J]. Roy. Soc. A, 1963, 274(541):55-79. |
[57] |
Huang J, Li Z, Liaw B Y, Zhang J B. Graphical analysis of electrochemical impedance spectroscopy data in bode and Nyquist representations[J]. J. Power Sources, 2016, 309:82-98.
doi: 10.1016/j.jpowsour.2016.01.073 URL |
[58] |
Li C K, Huang J. Impedance response of electrochemical interfaces: Part i. Exact analytical expressions for ideally polarizable electrodes[J]. J. Electrochem. Soc., 2021, 167(16):166517.
doi: 10.1149/1945-7111/abd450 URL |
[59] |
Klotz D, Schönleber M, Schmidt J, Ivers-Tiffée E. New approach for the calculation of impedance spectra out of time domain data[J]. Electrochim. Acta, 2011, 56(24):8763-8769.
doi: 10.1016/j.electacta.2011.07.096 URL |
[60] | Nussbaumer H J. The fast fourier transform, in fast fourier transform and convolution algorithms[M]. Nussbaumer H J, Editor, Springer Berlin Heidelberg: Berlin, Heidelberg, 1981: 80-111. |
[1] | 高博远, 冷文华. 氧化铜光电化学分解水反应速率方程[J]. 电化学(中英文), 2024, 30(8): 2312111-. |
[2] | 刘晨希, 邹泽萍, 胡梅雪, 丁宇, 谷宇, 刘帅, 南文静, 马溢昌, 陈招斌, 詹东平, 张秋根, 庄林, 颜佳伟, 毛秉伟. 电极/碱性聚电解质界面的微分电容曲线和零电荷电位测定[J]. 电化学(中英文), 2024, 30(3): 2303151-. |
[3] | 陈涛, 许元红, 李景虹. 基于电化学阻抗谱的致病菌检测传感器的研究进展[J]. 电化学(中英文), 2023, 29(6): 2218002-. |
[4] | 孙圣男, 徐梽川. 乙二醇氧化在不同电位区间下的电极负载量的优化[J]. 电化学(中英文), 2022, 28(2): 2108411-. |
[5] | 李响, 黄秋安, 李伟恒, 白玉轩, 王佳, 刘杨, 赵玉峰, 王娟, 张久俊. 宏观均相多孔电极电化学阻抗谱基础[J]. 电化学(中英文), 2021, 27(5): 467-497. |
[6] | 蔡转运, 刘佳, 关思远, 吴德印, 田中群. 紫罗碱衍生物分子结的电学性质理论研究[J]. 电化学(中英文), 2021, 27(1): 92-99. |
[7] | 王佳, 黄秋安, 李伟恒, 王娟, 庄全超, 张久俊. 电化学阻抗谱弛豫时间分布基础[J]. 电化学(中英文), 2020, 26(5): 607-627. |
[8] | 马洪运, 姚晓辉, 妙孟姚, 易阳, 伍绍中, 周江. 高镍正极材料(LiNi0.83Co0.12Mn0.05O2)45°C循环失效机理研究[J]. 电化学(中英文), 2020, 26(3): 431-440. |
[9] | 黄俊. 电催化界面和反应的电化学阻抗谱研究:经典永不褪色[J]. 电化学(中英文), 2020, 26(1): 3-18. |
[10] | 方亚辉, 刘智攀. 固液界面双电层的理论计算模拟[J]. 电化学(中英文), 2020, 26(1): 32-40. |
[11] | 廖群,张曙枫,冷文华. 铁电极电还原溴化钠甲醇溶液反应动力学和机理[J]. 电化学(中英文), 2017, 23(6): 645-653. |
[12] | 史坤明,郭建伟,王佳. Pt/C催化剂氧还原反应的交流阻抗动态研究[J]. 电化学(中英文), 2016, 22(5): 542-548. |
[13] | 侯瑞青,蒋平丽,董士刚,林昌健*. 镁钙合金表面贻贝类吸附蛋白膜的NaIO4氧化处理及抗腐蚀性能[J]. 电化学(中英文), 2015, 21(1): 58-65. |
[14] | 张笑,钟赟鑫,颜佳伟*,毛秉伟*. Au(111)-离子液体界面层状结构与温度关联的原位AFM力曲线研究[J]. 电化学(中英文), 2014, 20(4): 295-301. |
[15] | 冷文华, 朱红乔. 结合(光)电化学方法研究光催化降解污染物反应[J]. 电化学(中英文), 2013, 19(5): 437-443. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||