电化学(中英文) ›› 2022, Vol. 28 ›› Issue (11): 2219007. doi: 10.13208/j.electrochem.2219007
所属专题: “下一代二次电池”专题文章; iSAIEC 2023; “AI for Electrochemistry”专题文章
侯廷政1,2,*(), 陈翔4, 蒋璐1, 唐城3,4,*()
收稿日期:
2022-09-11
修回日期:
2022-10-10
出版日期:
2022-11-28
发布日期:
2022-11-04
Tingzheng Hou1,2,*(), Xiang Chen4, Lu Jiang1, Cheng Tang3,4,*()
Received:
2022-09-11
Revised:
2022-10-10
Published:
2022-11-28
Online:
2022-11-04
Contact:
* Tingzheng Hou: +1-5109938393; E-mail: tingzheng_hou@berkeley.edu (T. Hou),Cheng Tang: 86-10-62789041, E-mail: cheng.tang@adelaide.edu.au (C. Tang)
摘要:
电解液及构筑电极电解液界面对于开发和应用高比容量储能系统至关重要。具体来说,电解液的机械(抗压性、粘度)、热(热导率和热容)、化学(溶解性、活度、反应性)、输运和电化学(界面及界面层)等性质,与其所组成的储能器件的性能直接相关。目前,大量的实验研究通过调控电解液的物理和/或化学组成来改善电解液性能,以满足新型电极材料的工作运行。与此同时,理论模拟方法近年来得到了迅速发展,使人们可以从原子尺度来理解电解液在控制离子输运和构筑功能化界面的作用。站在理论模拟研究的前沿上,人们可以利用其所揭示的机理性认识对新型电解液开展理性设计。本文首先总结了传统电解液的组成、溶剂化结构和输运性质以及电极电解液界面层的形成机理,进一步讨论了利用新型电解液设计稳定电极电解液界面层的方法,包括使用电解液添加剂、高浓电解液和固态电解质,并着重讨论了对这些新型电解液体系进行原子尺度模拟的最新进展,为了解和认识电解液提供更为基本的理解,并为未来电解液的设计提供系统的指导。最后,作者对新型电解液的理论筛选进行了展望。
侯廷政, 陈翔, 蒋璐, 唐城. 当前和下一代锂离子电池电解液的原子尺度微观认识和研究进展[J]. 电化学(中英文), 2022, 28(11): 2219007.
Tingzheng Hou, Xiang Chen, Lu Jiang, Cheng Tang. Advances and Atomistic Insights of Electrolytes for Lithium-Ion Batteries and Beyond[J]. Journal of Electrochemistry, 2022, 28(11): 2219007.
[1] | Yang Y S. A review of electrochemical energy storage researches in the past 22 years[J]. J. Electrochem., 2020, 26(4): 443-463. |
[2] | Hou T Z, Peng H J, Huang J Q, Zhang Q, Li B. The formation of strong-couple interactions between nitrogen-doped graphene and sulfur/lithium (poly)sulfides in lithium-sulfur batteries[J]. 2D Mater., 2015, 2(1): 014011. |
[3] |
Lun Z, Ouyang B, Kwon D H, Ha Y, Foley E E, Huang T Y, Cai Z, Kim H, Balasubramanian M, Sun Y, Huang J, Tian Y, Kim H, McCloskey B D, Yang W, Clement R J, Ji H, Ceder G. Cation-disordered rocksalt-type high-entropy cathodes for Li-ion batteries[J]. Nat. Mater., 2021, 20(2): 214-221.
doi: 10.1038/s41563-020-00816-0 pmid: 33046857 |
[4] | Clément R J, Lun Z, Ceder G. Cation-disordered rocksalt transition metal oxides and oxyfluorides for high energy lithium-ion cathodes[J]. Energy Environ. Sci., 2020, 13(2): 345-373. |
[5] |
Manthiram A, Fu Y, Chung S H, Zu C, Su Y S. Rechargeable lithium-sulfur batteries[J]. Chem. Rev., 2014, 114(23): 11751-11787.
doi: 10.1021/cr500062v pmid: 25026475 |
[6] | Chen X, Li X, Mei D, Feng J, Hu M Y, Hu J, Engelhard M, Zheng J, Xu W, Xiao J, Liu J, Zhang J G. Reduction mechanism of fluoroethylene carbonate for stable solid-electrolyte interphase film on silicon anode[J]. ChemSus-Chem, 2014, 7(2): 549-554. |
[7] |
Lin D C, Liu Y Y, Cui Y. Reviving the lithium metal anode for high-energy batteries[J]. Nat. Nanotechnol., 2017, 12(3): 194-206.
doi: 10.1038/nnano.2017.16 pmid: 28265117 |
[8] |
Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chem. Rev., 2004, 104(10): 4303-4418.
doi: 10.1021/cr030203g pmid: 15669157 |
[9] | Cheng X B, Zhang R, Zhao C Z, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chem. Rev., 2017, 117(15): 10403-10473. |
[10] | Schroder K, Alvarado J, Yersak T A, Li J, Dudney N, Webb L J, Meng Y S, Stevenson K J. The effect of fluoroethylene carbonate as an additive on the solid electrolyte interphase on silicon lithium-ion electrodes[J]. Chem. Mater., 2015, 27(16): 5531-5542. |
[11] | Cheng X B, Yan C, Chen X, Guan C, Huang J Q, Peng H J, Zhang R, Yang S T, Zhang Q. Implantable solid electrolyte interphase in lithium-metal batteries[J]. Chem, 2017, 2(2): 258-270. |
[12] | Hou T, Yang G, Rajput N N, Self J, Park S W, Nanda J, Persson K A. The influence of FEC on the solvation structure and reduction reaction of LiPF6/EC electrolytes and its implication for solid electrolyte interphase formation[J]. Nano Energy, 2019, 64: 103881. |
[13] |
Blau S M, Patel H D, Spotte-Smith E W C, Xie X, Dwaraknath S, Persson K A. A chemically consistent graph architecture for massive reaction networks applied to solid-electrolyte interphase formation[J]. Chem. Sci., 2021, 12(13): 4931-4939.
doi: 10.1039/d0sc05647b pmid: 34163740 |
[14] |
Shi S Q, Lu P, Liu Z Y, Qi Y, Hector L G, Li H, Harris S J. Direct calculation of Li-ion transport in the solid electrolyte interphase[J]. J. Am. Chem. Soc., 2012, 134(37): 15476-15487.
pmid: 22909233 |
[15] | Shi S, Qi Y, Li H, Hector L G. Defect thermodynamics and diffusion mechanisms in Li2Co3 and implications for the solid electrolyte interphase in Li-ion batteries[J]. J. Phys. Chem. C, 2013, 117(17): 8579-8593. |
[16] | Aurbach D, Zaban A, Schechter A, Ein-Eli Y, Zinigrad E, Markovsky B. The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries: I. Li metal anodes[J]. J. Electrochem. Soc., 1995, 142(9): 2873-2882. |
[17] | Xu K, Lam Y, Zhang S S, Jow T R, Curtis T B. Solvation sheath of Li+ in nonaqueous electrolytes and its implication of graphite/electrolyte interface chemistry[J]. J. Phys. Chem. C, 2007, 111(20): 7411-7421. |
[18] |
Wang L, Menakath A, Han F, Wang Y, Zavalij P Y, Gaskell K J, Borodin O, Iuga D, Brown S P, Wang C, Xu K, Eichhorn B W. Identifying the components of the solid-electrolyte interphase in Li-ion batteries[J]. Nat. Chem., 2019, 11(9): 789-796.
doi: 10.1038/s41557-019-0304-z pmid: 31427766 |
[19] | Seo D M, Chalasani D, Parimalam B S, Kadam R, Nie M, Lucht B L. Reduction reactions of carbonate solvents for lithium ion batteries[J]. ECS Electrochem. Lett., 2014, 3(9): A91-A93. |
[20] | Philippe B, Dedryvère R, Gorgoi M, Rensmo H, Gonbeau D, Edström K. Role of the LiPF6 salt for the long-term stability of silicon electrodes in Li-ion batteries — a photoelectron spectroscopy study[J]. Chem. Mater., 2013, 25(3): 394-404. |
[21] | Yoon T, Milien M S, Parimalam B S, Lucht B L. Thermal decomposition of the solid electrolyte interphase (SEI) on silicon electrodes for lithium ion batteries[J]. Chem. Mater., 2017, 29(7): 3237-3245. |
[22] | Parimalam B S, MacIntosh A D, Kadam R, Lucht B L. Decomposition reactions of anode solid electrolyte interphase (SEI) components with LiPF6[J]. J. Phys. Chem. C, 2017, 121(41): 22733-22738. |
[23] | Jurng S, Brown Z L, Kim J, Lucht B L. Effect of electrolyte on the nanostructure of the solid electrolyte interphase (SEI) and performance of lithium metal anodes[J]. Energy Environ. Sci., 2018, 11(9): 2600-2608. |
[24] | Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Challenges in the development of advanced Li-ion batteries: a review[J]. Energy Environ. Sci., 2011, 4(9): 3243. |
[25] |
Galushkin N E, Yazvinskaya N N, Galushkin D N. Mec-hanism of gases generation during lithium-ion batteries cycling[J]. J. Electrochem. Soc., 2019, 166(6): A897-A908.
doi: 10.1149/2.0041906jes |
[26] |
Hou T, Fong K D, Wang J, Persson K A. The solvation structure, transport properties and reduction behavior of carbonate-based electrolytes of lithium-ion batteries[J]. Chem. Sci., 2021, 12(44): 14740-14751.
doi: 10.1039/d1sc04265c pmid: 34820089 |
[27] |
Liang C, Kwak K, Cho M. Revealing the solvation structure and dynamics of carbonate electrolytes in lithium-ion batteries by two-dimensional infrared spectrum modeling[J]. J. Phys. Chem. Lett., 2017, 8(23): 5779-5784.
doi: 10.1021/acs.jpclett.7b02623 pmid: 29131650 |
[28] | Seo D M, Reininger S, Kutcher M, Redmond K, Euler W B, Lucht B L. Role of mixed solvation and ion pairing in the solution structure of lithium ion battery electrolytes[J]. J. Phys. Chem. C, 2015, 119(25): 14038-14046. |
[29] | Pekarek R T, Affolter A, Baranowski L L, Coyle J, Hou T, Sivonxay E, Smith B A, McAuliffe R D, Persson K A, Key B, Apblett C, Veith G M, Neale N R. Intrinsic chemical reactivity of solid-electrolyte interphase components in silicon-lithium alloy anode batteries probed by FTIR spectroscopy[J]. J. Mater. Chem. A, 2020, 8(16): 7897-7906. |
[30] | Giorgini M G, Futamatagawa K, Torii H, Musso M, Cerini S. Solvation structure around the Li+ ion in mixed cyclic/linear carbonate solutions unveiled by the Raman noncoincidence effect[J]. J. Phys. Chem. Lett., 2015, 6(16): 3296-3302. |
[31] | Allen J L, Borodin O, Seo D M, Henderson W A. Combined quantum chemical/raman spectroscopic analyses of Li+ cation solvation: cyclic carbonate solvents—ethylene carbonate and propylene carbonate[J]. J. Power Sources, 2014, 267: 821-830. |
[32] | Su C C, He M, Amine R, Rojas T, Cheng L, Ngo A T, Amine K. Solvating power series of electrolyte solvents for lithium batteries[J]. Energy Environ. Sci., 2019, 12(4): 1249-1254. |
[33] | Su C C, He M, Amine R, Chen Z, Amine K. The relationship between the relative solvating power of electrolytes and shuttling effect of lithium polysulfides in lithium-sulfur batteries[J]. Angew. Chem. Int. Ed., 2018, 57(37): 12033-12036. |
[34] |
Borodin O, Olguin M, Ganesh P, Kent P R, Allen J L, Henderson W A. Competitive lithium solvation of linear and cyclic carbonates from quantum chemistry[J]. Phys. Chem. Chem. Phys., 2016, 18(1): 164-175.
doi: 10.1039/c5cp05121e pmid: 26601903 |
[35] | Zhang X, Kuroda D G. An Ab initio molecular dynamics study of the solvation structure and ultrafast dynamics of lithium salts in organic carbonates: a comparison between linear and cyclic carbonates[J]. J. Chem. Phys., 2019, 150(18): 184501. |
[36] | Tang Z K, Tse J S, Liu L M. Unusual Li-ion transfer mechanism in liquid electrolytes: a first-principles study[J]. J. Phys. Chem. Lett., 2016, 7(22): 4795-4801. |
[37] | Skarmoutsos I, Ponnuchamy V, Vetere V, Mossa S. Li+ solvation in pure, binary, and ternary mixtures of organic carbonate electrolytes[J]. J. Phys. Chem. C, 2015, 119(9): 4502-4515. |
[38] | Vatamanu J, Borodin O, Smith G D. Molecular dynamics simulation studies of the structure of a mixed carbonate/LiPF6 electrolyte near graphite surface as a function of electrode potential[J]. J. Phys. Chem. C, 2011, 116(1): 1114-1121. |
[39] | Boyer M J, Vilciauskas L, Hwang G S. Structure and Li+ ion transport in a mixed carbonate/LiPF6 electrolyte near graphite electrode surfaces: a molecular dynamics study[J]. Phys. Chem. Chem. Phys., 2016, 18(40): 27868-27876. |
[40] |
Shim Y. Computer simulation study of the solvation of lithium ions in ternary mixed carbonate electrolytes: free energetics, dynamics, and ion transport[J]. Phys. Chem. Chem. Phys., 2018, 20(45): 28649-28657.
doi: 10.1039/c8cp05190a pmid: 30406788 |
[41] | Yao N, Chen X, Shen X, Zhang R, Fu Z H, Ma X X, Zhang X Q, Li B Q, Zhang Q. An atomic insight into the chemical origin and variation of the dielectric constant in liquid electrolytes[J]. Angew. Chem. Int. Ed., 2021, 60(39): 21473-21478. |
[42] | Tenney C M, Cygan R T. Analysis of molecular clusters in simulations of lithium-ion battery electrolytes[J]. J. Phys. Chem. C, 2013, 117(47): 24673-24684. |
[43] | Liu H, Maginn E. A molecular dynamics investigation of the structural and dynamic properties of the ionic liquid 1-N-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide[J]. J. Chem. Phys., 2011, 135(12): 124507. |
[44] | Fong K D, Self J, Diederichsen K M, Wood B M, McCloskey B D, Persson K A. Ion transport and the true transference number in nonaqueous polyelectrolyte solutions for lithium ion batteries[J]. ACS Cent. Sci., 2019, 5(7): 1250-1260. |
[45] | Fong K D, Bergstrom H K, McCloskey B D, Mandadapu K K. Transport phenomena in electrolyte solutions: nonequilibrium thermodynamics and statistical mechanics[J]. AICHE J., 2020, 66(12): e17091. |
[46] | Fong K D, Self J, McCloskey B D, Persson K A. Onsager transport coefficients and transference numbers in polyelectrolyte solutions and polymerized ionic liquids[J]. Macromolecules, 2020, 53(21): 9503-9512. |
[47] | Ringsby A J, Fong K D, Self J, Bergstrom H K, McCloskey B D, Persson K A. Transport phenomena in low temperature lithium-ion battery electrolytes[J]. J. Electro-chem. Soc., 2021, 168(8): 080501. |
[48] | Fong K D, Self J, McCloskey B D, Persson K A. Ion correlations and their impact on transport in polymer-based electrolytes[J]. Macromolecules, 2021, 54(6): 2575-2591. |
[49] | Spotte-Smith E W C, Kam R L, Barter D, Xie X, Hou T, Dwaraknath S, Blau S M, Persson K A. Toward a mechanistic model of solid-electrolyte interphase formation and evolution in lithium-ion batteries[J]. ACS Energy Lett., 2022, 7(4): 1446-1453. |
[50] | Graetz J, Ahn C C, Yazami R, Fultz B. Highly reversible lithium storage in nanostructured silicon[J]. Electrochem. Solid-State Lett., 2003, 6(9): A194-A197. |
[51] | Schweidler S, de Biasi L, Schiele A, Hartmann P, Breze-sinski T, Janek J. Volume changes of graphite anodes revisited: a combined operando X-ray diffraction and in situ pressure analysis study[J]. J. Phys. Chem. C, 2018, 122(16): 8829-8835. |
[52] | Xu K. Electrolytes and interphases in Li-ion batteries and beyond[J]. J. Phys. Chem. C, 2014, 114(23): 11503-11618. |
[53] |
Chen X, Shen X, Li B, Peng H J, Cheng X B, Li B Q, Zhang X Q, Huang J Q, Zhang Q. Ion-solvent complexes promote gas evolution from electrolytes on a sodium metal anode[J]. Angew. Chem. Int. Ed., 2018, 57(3): 734-737.
doi: 10.1002/anie.201711552 pmid: 29178154 |
[54] | Zhang X Q, Chen X, Cheng X B, Li B Q, Shen X, Yan C, Huang J Q, Zhang Q. Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes[J]. Angew. Chem. Int. Ed., 2018, 57(19): 5301-5305. |
[55] | Nguyen C C, Lucht B L. Comparative study of fluoroe-thylene carbonate and vinylene carbonate for silicon anodes in lithium ion batteries[J]. J. Electrochem. Soc., 2014, 161(12): A1933-A1938. |
[56] |
Philippe B, Dedryvere R, Gorgoi M, Rensmo H, Gonbeau D, Edstrom K. Improved performances of nanosilicon electrodes using the salt LiFSI: A photoelectron spectroscopy study[J]. J. Am. Chem. Soc., 2013, 135(26): 9829-9842.
doi: 10.1021/ja403082s pmid: 23763546 |
[57] | Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang J G. Lithium metal anodes for rechargeable batteries[J]. Energy Environ. Sci., 2014, 7(2): 513-537. |
[58] | Sun Y M, Liu N A, Cui Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries[J]. Nat. Energy, 2016, 1(7): 16071. |
[59] |
Ding F, Xu W, Graff G L, Zhang J, Sushko M L, Chen X, Shao Y, Engelhard M H, Nie Z, Xiao J, Liu X, Sushko P V, Liu J, Zhang J G. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism[J]. J. Am. Chem. Soc., 2013, 135(11): 4450-4456.
doi: 10.1021/ja312241y pmid: 23448508 |
[60] | Zhang X Q, Cheng X B, Chen X, Yan C, Zhang Q. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries[J]. Adv. Funct. Mater., 2017, 27(10): 1605989. |
[61] |
Qian J, Henderson W A, Xu W, Bhattacharya P, Engelhard M, Borodin O, Zhang J G. High rate and stable cycling of lithium metal anode[J]. Nat. Commun., 2015, 6: 6362.
doi: 10.1038/ncomms7362 pmid: 25698340 |
[62] | Xia Y, Zheng J M, Wang C M, Gu M. Designing principle for Ni-rich cathode materials with high energy density for practical applications[J]. Nano Energy, 2018, 49: 434-452. |
[63] | Hou T Z, Xu W T, Chen X, Peng H J, Huang J Q, Zhang Q. Lithium bond chemistry in lithium-sulfur batteries[J]. Angew. Chem. Int. Ed., 2017, 56(28): 8178-8182. |
[64] | Hou T Z, Chen X, Peng H J, Huang J Q, Li B Q, Zhang Q, Li B. Design principles for heteroatom-doped nano-carbon to achieve strong anchoring of polysulfides for lithium-sulfur batteries[J]. Small, 2016, 12(24): 3283-3291. |
[65] | Rajput N N, Murugesan V, Shin Y, Han K S, Lau K C, Chen J, Liu J, Curtiss L A, Mueller K T, Persson K A. Elucidating the solvation structure and dynamics of lithium polysulfides resulting from competitive salt and solvent interactions[J]. Chem. Mater., 2017, 29(8): 3375-3379. |
[66] | Borodin O, Self J, Persson K A, Wang C, Xu K. Uncharted waters: super-concentrated electrolytes[J]. Joule, 2020, 4(1): 69-100. |
[67] | Shkrob I A, Wishart J F, Abraham D P. What makes fluoroethylene carbonate different?[J]. J. Phys. Chem. C, 2015, 119(27): 14954-14964. |
[68] | Xu C, Lindgren F, Philippe B, Gorgoi M, Björefors F, Edström K, Gustafsson T. Improved performance of the silicon anode for Li-ion batteries: understanding the surface modification mechanism of fluoroethylene carbonate as an effective electrolyte additive[J]. Chem. Mater., 2015, 27(7): 2591-2599. |
[69] | Sina M, Alvarado J, Shobukawa H, Alexander C, Manich-ev V, Feldman L, Gustafsson T, Stevenson K J, Meng Y /S. Direct visualization of the solid electrolyte interphase and its effects on silicon electrochemical performance[J]. Adv. Mater. Interfaces, 2016, 3(20): 1600438. |
[70] | Shi F, Ross P N, Somorjai G A, Komvopoulos K. The chemistry of electrolyte reduction on silicon electrodes revealed by in situ ATR-FTIR spectroscopy[J]. J. Phys. Chem. C, 2017, 121(27): 14476-14483. |
[71] | Schroder K W, Celio H, Webb L J, Stevenson K J. Examining solid electrolyte interphase formation on crystalline silicon electrodes: influence of electrochemical preparation and ambient exposure conditions[J]. J. Phys. Chem. C, 2012, 116(37): 19737-19747. |
[72] |
Breitung B, Baumann P, Sommer H, Janek J, Brezesinski T. In situ and operando atomic force microscopy of high-capacity nano-silicon based electrodes for lithium-ion batteries[J]. Nanoscale, 2016, 8(29): 14048-14056.
doi: 10.1039/c6nr03575b pmid: 27222212 |
[73] | Yoon I, Abraham D P, Lucht B L, Bower A F, Guduru P R. In situ measurement of solid electrolyte interphase evolution on silicon anodes using atomic force microscopy[J]. Adv. Energy Mater., 2016, 6(12): 1600099. |
[74] | Young B T, Heskett D R, Nguyen C C, Nie M, Woicik J C, Lucht B L. Hard X-ray photoelectron spectroscopy (HAXPES) investigation of the silicon solid electrolyte interphase (SEI) in lithium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2015, 7(36): 20004-20011. |
[75] |
Jin Y, Kneusels N H, Magusin P, Kim G, Castillo-Martinez E, Marbella L E, Kerber R N, Howe D J, Paul S, Liu T, Grey C P. Identifying the structural basis for the increased stability of the solid electrolyte interphase formed on silicon with the additive fluoroethylene carbonate[J]. J. Am. Chem. Soc., 2017, 139(42): 14992-15004.
doi: 10.1021/jacs.7b06834 pmid: 28933161 |
[76] | Schiele A, Breitung B, Hatsukade T, Berkes B B, Hartmann P, Janek J, Brezesinski T. The critical role of fluoroethylene carbonate in the gassing of silicon anodes for lithium-ion batteries[J]. ACS Energy Lett., 2017, 2(10): 2228-2233. |
[77] | Zhang Y Y, Su M, Yu X F, Zhou Y F, Wang J G, Cao R G, Xu W, Wang C M, Baer D R, Borodin O, Xu K, Wang Y T, Wang X L, Xu Z J, Wang F Y, Zhu Z H. Investigation of ion-solvent interactions in nonaqueous electrolytes using in situ liquid SIMS[J]. Anal. Chem., 2018, 90(5): 3341-3348. |
[78] |
Stetson C, Yoon T, Coyle J, Nemeth W, Young M, Norman A, Pylypenko S, Ban C, Jiang C S, Al-Jassim M, Burrell A. Three-dimensional electronic resistivity mapping of solid electrolyte interphase on Si anode materials[J]. Nano Energy, 2019, 55: 477-485.
doi: 10.1016/j.nanoen.2018.11.007 |
[79] | Shobukawa H, Alvarado J, Yang Y, Meng Y S. Electrochemical performance and interfacial investigation on Si composite anode for lithium ion batteries in full cell[J]. J. Power Sources, 2017, 359: 173-181. |
[80] | He J, Wang H P, Zhou Q, Qi S H, Wu M G, Li F, Hu W, Ma J M. Unveiling the role of Li+ solvation structures with commercial carbonates in the formation of solid electrolyte interphase for lithium metal batteries[J]. Small Methods, 2021, 5(8): e2100441. |
[81] | Yamada Y, Yamada A. Review—superconcentrated ele-ctrolytes for lithium batteries[J]. J. Electrochem. Soc., 2015, 162(14): A2406-A2423. |
[82] |
Yamada Y, Wang J, Ko S, Watanabe E, Yamada A. Advances and issues in developing salt-concentrated battery electrolytes[J]. Nat. Energy, 2019, 4(4): 269-280.
doi: 10.1038/s41560-019-0336-z |
[83] | Suo L M, Borodin O, Gao T, Olguin M, Ho J, Fan X L, Luo C, Wang C S, Xu K. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries[J]. Science, 2015, 350(6263): 938-943. |
[84] |
Borodin O, Suo L M, Gobet M, Ren X M, Wang F, Faraone A, Peng J, Olguin M, Schroeder M, Ding M S, Gobrogge E, Cresce A V, Munoz S, Dura J A, Greenbaum S, Wang C S, Xu K. Liquid structure with nano-heterogeneity promotes cationic transport in concentrated electrolytes[J]. ACS Nano, 2017, 11(10): 10462-10471.
doi: 10.1021/acsnano.7b05664 pmid: 29016112 |
[85] | Self J, Fong K D, Persson K A. Transport in superconcen-trated LiPF6 and LiBF4/propylene carbonate electrolytes[J]. ACS Energy Lett., 2019, 4(12): 2843-2849. |
[86] | Cao X, Jia H, Xu W, Zhang J G. Review—localized high-concentration electrolytes for lithium batteries[J]. J. Electrochem. Soc., 2021, 168(1): 010522. |
[87] | Chen S, Zheng J, Mei D, Han K S, Engelhard M H, Zhao W, Xu W, Liu J, Zhang J G. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes[J]. Adv. Mater., 2018, 30(21): 1706102. |
[88] | Murugan R, Thangadurai V, Weppner W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12[J]. Angew. Chem. Int. Ed., 2007, 46(41): 7778-7781. |
[89] | Wenzel S, Weber D A, Leichtweiss T, Busche M R, Sann J, Janek J. Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte[J]. Solid State Ion., 2016, 286: 24-33. |
[90] | Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi G Y. Ionic conductivity of the lithium titanium phosphate?(Li1+xMXTi2-x(PO4)3, M = Al, Sc, Y, and La) systems[J]. J. Electrochem. Soc., 2019, 136(2): 590-591. |
[91] | Luo W, Gong Y H, Zhu Y Z, Li Y J, Yao Y G, Zhang Y, Fu K, Pastel G, Lin C F, Mo Y F, Wachsman E D, Hu L B. Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer[J]. Adv. Mater., 2017, 29(22): 1606042. |
[92] | Huo H Y, Chen Y, Zhao N, Lin X T, Luo J, Yang X F, Liu Y L, Guo X X, Sun X L. In-situ formed Li2Co3-free garnet/Li interface by rapid acid treatment for dendrite-free solid-state batteries[J]. Nano Energy, 2019, 61: 119-125. |
[93] | Qin K, Holguin K, Mohammadiroudbari M, Huang J, Kim E Y S, Hall R, Luo C. Strategies in structure and electrolyte design for high-performance lithium metal batteries[J]. Adv. Funct. Mater., 2021, 31(15): 2009694. |
[94] | Brissot C, Rosso M, Chazalviel J N, Lascaud S. Dendritic growth mechanisms in lithium/polymer cells[J]. J. Power Sources, 1999, 81-82: 925-929. |
[95] | Singh M, Odusanya O, Wilmes G M, Eitouni H B, Gomez E D, Patel A J, Chen V L, Park M J, Fragouli P, Iatrou H, Hadjichristidis N, Cookson D, Balsara N P. Effect of molecular weight on the mechanical and electrical properties of block copolymer electrolytes[J]. Macromolecules, 2007, 40(13): 4578-4585. |
[96] |
Bouchet R, Maria S, Meziane R, Aboulaich A, Lienafa L, Bonnet J P, Phan T N, Bertin D, Gigmes D, Devaux D, Denoyel R, Armand M. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries[J]. Nat. Mater., 2013, 12(5): 452-457.
doi: 10.1038/nmat3602 pmid: 23542871 |
[97] | Zhou W D, Wang Z X, Pu Y, Li Y T, Xin S, Li X F, Chen J F, Goodenough J B. Double-layer polymer electrolyte for high-voltage all-solid-state rechargeable batteries[J]. Adv. Mater., 2019, 31(4): 1805574. |
[98] | Stone G M, Mullin S A, Teran A A, Hallinan D T, Minor A M, Hexemer A, Balsara N P. Resolution of the modulus versus adhesion dilemma in solid polymer electrolytes for rechargeable lithium metal batteries[J]. J. Electrochem. Soc., 2012, 159(3): A222-A227. |
[99] | Duan H, Fan M, Chen W P, Li J Y, Wang P F, Wang W P, Shi J L, Yin Y X, Wan L J, Guo Y G. Extended electrochemical window of solid electrolytes via heterogeneous multilayered structure for high-voltage lithium metal batteries[J]. Adv. Mater., 2019, 31(12): 1807789. |
[100] |
Cheng Q, Li A J, Li N, Li S, Zangiabadi A, Li T D, Huang W L, Li A C, Jin T W, Song Q Q, Xu W H, Ni N, Zhai H W, Dontigny M, Zaghib K, Chuan X Y, Su D, Yan K, Yang Y. Stabilizing solid electrolyte-anode interface in Li-metal batteries by boron nitride-based nanocomposite coating[J]. Joule, 2019, 3(6): 1510-1522.
doi: 10.1016/j.joule.2019.03.022 |
[101] |
Liu W, Liu N, Sun J, Hsu P C, Li Y, Lee H W, Cui Y. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers[J]. Nano Letters, 2015, 15(4): 2740-2745.
doi: 10.1021/acs.nanolett.5b00600 pmid: 25782069 |
[102] |
Zhou W D, Wang S F, Li Y T, Xin S, Manthiram A, Goodenough J B. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte[J]. J. Am. Chem. Soc., 2016, 138(30): 9385-9388.
doi: 10.1021/jacs.6b05341 pmid: 27440104 |
[103] |
Zhao C Z, Zhang X Q, Cheng X B, Zhang R, Xu R, Chen P Y, Peng H J, Huang J Q, Zhang Q. An anion-immoblized composite electrolyte for dendrite-free lithium metal anodes[J]. Proc. Natl. Acad. Sci. U.S.A, 2017, 114(42): 11069-11074.
doi: 10.1073/pnas.1708489114 pmid: 28973945 |
[104] | Judez X, Martinez-Ibañez M, Santiago A, Armand M, Zhang H, Li C M. Quasi-solid-state electrolytes for lithium sulfur batteries: advances and perspectives[J]. J. Power Sources, 2019, 438: 226985. |
[105] |
Xu W, Pei X, Diercks C S, Lyu H, Ji Z, Yaghi O M. A metal-organic framework of organic vertices and polyoxometalate linkers as a solid-state electrolyte[J]. J. Am. Chem. Soc., 2019, 141(44): 17522-17526.
doi: 10.1021/jacs.9b10418 pmid: 31642665 |
[106] | Cronau M, Szabo M, König C, Wassermann T B, Roling B. How to measure a reliable ionic conductivity? The stack pressure dilemma of microcrystalline sulfide-based solid electrolytes[J]. ACS Energy Lett., 2021, 6(9): 3072-3077. |
[107] | Winand J M, Depireux J. Measurement of ionic conductivity in solid electrolytes[J]. Europhys. Lett., 1989, 8(5): 447-452. |
[108] |
Hou T, Xu W, Pei X, Jiang L, Yaghi O M, Persson K A. Ionic conduction mechanism and design of metal-organic framework based quasi-solid-state electrolytes[J]. J. Am. Chem. Soc., 2022, 144(30): 13446-13450.
doi: 10.1021/jacs.2c03710 pmid: 35700972 |
[109] |
Yang G, Ivanov I N, Ruther R E, Sacci R L, Subjakova V, Hallinan D T, Nanda J. Electrolyte solvation structure at solid-liquid interface probed by nanogap surface-enhanced Raman spectroscopy[J]. ACS Nano, 2018, 12(10): 10159-10170.
doi: 10.1021/acsnano.8b05038 pmid: 30226745 |
[110] | Nanda J, Yang G, Hou T, Voylov D N, Li X, Ruther R E, Naguib M, Persson K, Veith G M, Sokolov A P. Unraveling the nanoscale heterogeneity of solid electrolyte interphase using tip-enhanced Raman spectroscopy[J]. Joule, 2019, 3(8): 2001-2019. |
[111] | Chen X, Zhang Q. Atomic insights into the fundamental interactions in lithium battery electrolytes[J]. Acc. Chem. Res., 2020, 53(9): 1992-2002. |
[112] | Yao N, Chen X, Fu Z H, Zhang Q. Applying classical, ab initio, and machine-learning molecular dynamics simulations to the liquid electrolyte for rechargeable batteries[J]. Chem. Rev., 2022, 122(12): 10970-11021. |
[1] | 杨方令, 佐藤龙平, 程建锋, 木須一彰, 王倩, 贾雪, 折茂慎一, 李昊. 数据驱动发展下一代镁离子固态电解质[J]. 电化学(中英文), 2024, 30(7): 2415001-. |
[2] | 陈露露, 李浩冉, 刘维祎, 王伟. 锂离子电池正极材料原位漫反射光谱电化学研究[J]. 电化学(中英文), 2024, 30(6): 2314006-. |
[3] | 侯博文, 何龙, 冯旭宁, 张伟峰, 王莉, 何向明. 胺类添加剂对NCM811‖SiC电池热失控抑制效果研究[J]. 电化学(中英文), 2023, 29(8): 2211141-. |
[4] | 张修庆, 唐帅, 付永柱. 锂硫电池电解液功能性添加剂研究进展[J]. 电化学(中英文), 2023, 29(4): 2217005-. |
[5] | 罗宇, 马如琴, 龚正良, 杨勇. 固态锂硫电池研究进展[J]. 电化学(中英文), 2023, 29(3): 2217007-. |
[6] | 冯辛, 刘博文, 郭可鑫, 范林丰, 王根香, 次素琴, 温珍海. 基于阳极甘油氧化电催化的碱/酸混合电解制氢研究[J]. 电化学(中英文), 2023, 29(2): 2215005-. |
[7] | 谷宇, 胡元飞, 王卫伟, 尤恩铭, 唐帅, 苏建加, 易骏, 颜佳伟, 田中群, 毛秉伟. 碳酸酯类电解液中纳米银电极界面过程的原位拉曼光谱研究[J]. 电化学(中英文), 2023, 29(12): 2301261-. |
[8] | 赵刚, 龚正良, 李益孝, 杨勇. 氧化钨和磷钨酸对LiNi0.96Co0.02Mn0.02O2材料的表面包覆改性研究[J]. 电化学(中英文), 2023, 29(10): 2204281-. |
[9] | 陈思, 郑淞生, 郑雷铭, 张叶涵, 王兆林. 水热法制备锂电池Si@C负极材料的工艺优化研究[J]. 电化学(中英文), 2022, 28(8): 2112221-. |
[10] | 王京玥, 王睿, 王诗琦, 王立帆, 詹纯. 一步固相法合成锂离子电池高镍层状正极材料[J]. 电化学(中英文), 2022, 28(8): 2112131-. |
[11] | 谯渭川, 李芳儒, 肖瑾林, 屈丽娟, 赵晓, 张梦, 庞春雷, 李子坤, 任建国, 贺雪琴. 硅氧材料的膨胀性能研究和改善[J]. 电化学(中英文), 2022, 28(5): 2108121-. |
[12] | 张滟滟, 刘越, 陆一鸣, 于沛平, 杜文轩, 麻冰云, 谢淼, 杨昊, 程涛. 多尺度模拟研究溶质调控下电解液在锂金属电极上的分解机理[J]. 电化学(中英文), 2022, 28(4): 2105181-. |
[13] | 王加义, 郭胜楠, 王新, 谷林, 苏东. 锂离子电池高镍层状氧化物正极结构失效机制[J]. 电化学(中英文), 2022, 28(2): 2108431-. |
[14] | 郭瑞琪, 吴锋, 王欣然, 白莹, 吴川. 多电子反应材料推动高能量密度电池发展:材料与体系创新[J]. 电化学(中英文), 2022, 28(12): 2219011-. |
[15] | 朱振威, 邱景义, 王莉, 曹高萍, 何向明, 王京, 张浩. 人工智能在锂离子电池研发中的应用[J]. 电化学(中英文), 2022, 28(12): 2219003-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||