电化学(中英文) ›› 2022, Vol. 28 ›› Issue (11): 2219002. doi: 10.13208/j.electrochem.2219002
所属专题: “下一代二次电池”专题文章
李丹丹1,2, 纪翔宇3, 陈明3, 杨燕茹1,2, 王晓东1,2,*(), 冯光3,*()
收稿日期:
2022-08-26
修回日期:
2022-11-12
出版日期:
2022-11-28
发布日期:
2022-11-14
Dan-Dan Li1,2, Xiang-Yu Ji3, Ming Chen3, Yan-Ru Yang1,2, Xiao-Dong Wang1,2,*(), Guang Feng3,*()
Received:
2022-08-26
Revised:
2022-11-12
Published:
2022-11-28
Online:
2022-11-14
Contact:
Xiao-Dong Wang: Tel: (86-10)61771307, E-mail: wangxd99@gmail.com;Guang Feng: Tel: (86)18062636661, E-mail: gfeng@hust.edu.cn
摘要:
近年来,随着单阳离子液体的发展,新型低聚物离子液体被合成并应用。这类离子液体可看作是由几个重复的单阳离子组合而成,可以通过改变阳离子带电基团、间隔连接的长度或种类、末端链的长度以及阴离子种类来获得更多不同的结构。因此,低聚离子液体有更复杂的微观结构和内部相互作用,决定了其多特征的物化性质和电化学特性,有望满足更多对溶剂性能有特定要求的应用。例如,与单阳离子液体相比,低聚离子液体具有更大的可调节性、更宽的液态温度范围、更高的热稳定性等优点,使其在电化学储能设备中得到越来越多的应用,如用作超级电容器和锂离子电池的电解液。在本综述中,我们系统地总结并详细解释了低聚离子液体的性质和结构(包括单个离子的结构和本体液内部的纳米组织)之间的关联,主要是双阳离子液体和三阳离子液体;概括了低聚离子液体作为超级电容器和锂离子电池的电解液的相关研究,重点阐述了由低聚离子液体和不同类型电极组成的双电层的结构和性能,以及与相应单阳离子液体电解液的比较结果;提供了降低低聚离子液体粘度和加速离子扩散的优化措施,提出了低聚离子液体电解液未来可能面临的主要问题和发展前景。
李丹丹, 纪翔宇, 陈明, 杨燕茹, 王晓东, 冯光. 低聚离子液体的体相与界面及其电化学储能应用[J]. 电化学(中英文), 2022, 28(11): 2219002.
Dan-Dan Li, Xiang-Yu Ji, Ming Chen, Yan-Ru Yang, Xiao-Dong Wang, Guang Feng. Oligomeric Ionic Liquids: Bulk, Interface and Electrochemical Application in Energy Storage[J]. Journal of Electrochemistry, 2022, 28(11): 2219002.
Charge (e) | L-J parameter | |||||
---|---|---|---|---|---|---|
Atom | [C3(mim)2]2+ | [C9(mim)2]2+ | [C3(mim)3]3+ | [C6(mim)3]3+ | σii (Å) | εii (kJ·mol-1) |
NA1 | 0.12 | 0.12 | 0.12 | 0.12 | 3.25 | 0.71128 |
CR2 | -0.088 | -0.088 | -0.088 | -0.088 | 3.55 | 0.29288 |
NA3 | 0.12 | 0.12 | 0.12 | 0.12 | 3.25 | 0.71128 |
CW4 | -0.104 | -0.104 | -0.104 | -0.104 | 3.55 | 0.29288 |
CW5 | -0.104 | -0.104 | -0.104 | -0.104 | 3.55 | 0.29288 |
C0 | -0.136 | -0.136 | -0.136 | -0.136 | 3.5 | 0.27614 |
C1 | -0.136 | -0.136 | -0.136 | -0.136 | 3.5 | 0.27614 |
C2 | 0.008 | 0.008 | 0.008 | 0.008 | 3.5 | 0.27614 |
C3 | -0.096 | -0.096 | 3.5 | 0.27614 | ||
C4 | -0.096 | -0.096 | 3.5 | 0.27614 | ||
C5 | -0.096 | -0.096 | 3.5 | 0.27614 | ||
H0 | 0.104 | 0.104 | 0.104 | 0.104 | 2.5 | 0.12552 |
H1 | 0.104 | 0.104 | 0.104 | 0.104 | 2.5 | 0.12552 |
H2 | 0.100 | 0.048 | 0.100 | 0.048 | 2.5 | 0.12552 |
H3 | 0.048 | 0.048 | 2.5 | 0.12552 | ||
H4 | 0.048 | 0.048 | 2.5 | 0.12552 | ||
H5 | 0.048 | 0.048 | 2.5 | 0.12552 | ||
HA | 0.168 | 0.168 | 0.168 | 0.168 | 2.42 | 0.12552 |
Physicochemical Properties of Symmetrical Imidazolium and Pyrrolidinium DILs | ||||||||
---|---|---|---|---|---|---|---|---|
Ionic liquid | MW (g·mol-1) | MP(oC) | Td (oC) | Density (g·cm-3) | Viscosity | Miscibilitya | ECW (V) | |
water | ACN | |||||||
[C3(mim)2][Br]2 | 366.10 | 162 | 288 | M | I | |||
[C3(mim)2][Tf2N]2 | 766.58 | -4 | 401 | 1.61 | 249 cP | I | M | |
[C3(mim)2][BF4]2 | 379.90 | 117 | M | M | ||||
[C3(mim)2][PF6]2 | 496.22 | 131 | 320 | I | M | |||
[C6(mim)2][Br]2 | 408.18 | 155 | 298 | M | I | |||
[C6(mim)2][Tf2N]2 | 808.66 | > -14, < -4 | 1.52 | 362 cP | I | M | ||
[C6(mim)2][BF4]2 | 421.98 | 92 | M | M | ||||
[C6(mim)2][PF6]2 | 538.30 | 136 | I | M | ||||
[C9(mim)2][Br]2 | 450.26 | 6 | 1.41 | 1477 cP | M | I | ||
[C9(mim)2][Tf2N]2 | 850.74 | -14 | 1.47 | 443 cP | I | M | ||
[C9(mim)2][BF4]2 | 464.06 | -4 | 1.3 | M | M | |||
[C9(mim)2][PF6]2 | 580.38 | 88 | I | M | ||||
[C12(mim)2][Br]2 | 492.34 | -17 | 1.27 | 2008 cP | M | I | ||
[C12(mim)2][Tf2N]2 | 892.82 | -26 | 1.40 | 606 cP | I | M | ||
[C12(mim)2][BF4]2 | 506.14 | -19 | 1.26 | PM | M | |||
[C12(mim)2][PF6]2 | 622.46 | 9 | 1.36 | I | M | |||
[C9(bim)2][Br]2 | 534.42 | >0, <23 | 1.27 | >2500 cP | M | I | ||
[C9(bim)2][Tf2N]2 | 934.90 | >-42, <-8 | 1.35 | 550 cP | I | M | ||
[C9(bim)2][BF4]2 | 548.22 | >-42, <-8 | 1.20 | PM | M | |||
[C9(bim)2][PF6]2 | 664.54 | >0, <23 | 1.30 | I | M | |||
[C3(m2im)2][Br]2 | 394.15 | 298 | M | I | ||||
[C3(m2im)2][Tf2N]2 | 794.63 | 91 | I | M | ||||
[C3(m2im)2][PF6]2 | 524.27 | 264 | I | |||||
[C9(m2im)2][Br]2 | 478.31 | 174 | M | I | ||||
[C9(m2im)2][Tf2N]2 | 878.79 | -42 | 1.47 | 687 cP | I | M | ||
[C9(m2im)2][BF4]2 | 492.11 | >0, <23 | 1.31 | M | M | |||
[C9(m2im)2][PF6]2 | 608.43 | 130 | I | M | ||||
[C12(benzim)2][Br]2 | 644.53 | 151 | I | I | ||||
[C12(benzim)2][NTf2]2 | 1045.01 | >-8, <0 | 1.37 | I | M | |||
[C12(benzim)2][PF6]2 | 774.65 | -15 | 1.27 | I | M | |||
[C3(mpy)2][Br]2 | 372.18 | 51 | M | I | ||||
[C3(mpy)2][Tf2N]2 | 772.67 | 206 | I | M | ||||
[C3(mpy)2][PF6]2 | 502.30 | 359 | I | M | ||||
[C9(mpy)2][Br]2 | 456.34 | 257 | M | I | ||||
[C9(mpy)2][Tf2N]2 | 856.83 | >-8, <0 | 1.41 | 502 cP | I | M | ||
[C9(mpy)2][PF6]2 | 586.46 | 223 | I | M | ||||
[C9(bpy)2][Br]2 | 540.50 | 216 | M | I | ||||
[C9(bpy)2][Tf2N]2 | 940.98 | 84 | I | M | ||||
[C9(bpy)2][PF6]2 | 670.62 | 249 | I | M | ||||
[C(mim)2][I]2 | 431 | >260 | M | I | ||||
[C(mim)2][Tf2N]2 | 90 ~ 94 | I | M | |||||
[C4(mim)2][Cl]2 | 291.97 | 145 ~ 150 | M | I | ||||
[C4(mim)2][Tf2N]2 | 54 ~ 56 | I | M | |||||
Physicochemical Properties of Symmetrical Imidazolium and Pyrrolidinium DILs | ||||||||
Ionic liquid | MW (g·mol-1) | MP(oC) | Td (oC) | Density (g·cm-3) | Viscosity | Miscibilitya | ECW (V) | |
water | ACN | |||||||
[C8(mim)2][Tf2N]2 | 25 | I | M | |||||
[C10(mim)2][Cl]2 | 25 | M | I | |||||
[C10(mim)2][Tf2N]2 | 25 | I | M | |||||
[C12(mim)2][Cl]2 | 35 ~ 40 | M | I | |||||
[C4(mim)2][Br]2 | 152.5 | 297 | M | I | ||||
[C5(mim)2][Br]2 | 137.8 | 282 | M | I | ||||
[C3(bim)2][Br]2 | 96.2 | 280 | M | I | ||||
[C4(bim)2][Br]2 | 275 | M | I | |||||
[C5(bim)2][Br]2 | 280 | M | I | |||||
[C6(bim)2][Br]2 | 167.9 | 279 | M | I | ||||
[C3(him)2][Br]2 | 122.6 | 280 | M | I | ||||
[C4(him)2][Br]2 | 277 | M | I | |||||
[C5(him)2][Br]2 | 284 | M | I | |||||
[C6(him)2][Br]2 | 279 | M | I | |||||
[C5(mim)2][Tf2N]2 | 794.2 | -61 | 365.2 | 1.57 | 251 cSt | I | M | |
[C5(hyeim)2][Tf2N]2 | 854.2 | -65 | 257.4 | 1.58 | 241 cSt | I | M | |
[C5(bim)2][Tf2N]2 | 878.3 | -62 | 375.8 | 1.44 | 355 cSt | I | M | |
[C5(benzim)2][Tf2N]2 | 946.3 | -34.5 | 291.1 | 1.55 | 1209 cSt | I | M | |
[C5(tma)2][Tf2N]2 | 743.2 | 86 ~ 88 | 363.7 | 1.33 | I | M | ||
[C6O2(bim)2][TFSI]2 | 212 | 1.40 | I | M | 5 | |||
[C2(mim)2][NTf2]2 | 1.78 | I | M | 4.11 | ||||
[C2(mim)2][PF6]2 | 1.56 | I | M | 4.11 | ||||
[C2(mim)2][BF4]2 | 1.52 | M | M | 4.11 | ||||
[C6O2(mpy)2][TFSI]2 | 381 | 6 | ||||||
[C8O2(mpy)2][TFSI]2 | 366 | 6 | ||||||
[C6O2(mpip)2][TFSI]2 | 375 | 6 | ||||||
[C8O2(mpip)2][TFSI]2 | 369 | 6 | ||||||
Physicochemical Properties of Aliphatic Tetraalkylammonium DILs | ||||||||
[C2(N888)2][Br]2 | 390.24 | 221.83 | M | M | ||||
[C3(N888)2][Br]2 | 404.27 | 84.97 | 219 | M | M | |||
[C4(N888)2][Br]2 | 418.29 | 207 | M | M | ||||
[C2(N222)2][Br]2 | 895.20 | 250.28 | 266.91 | I | M | |||
[C3(N222)2][Br]2 | 909.22 | 219.76 | 266.37 | I | M | |||
[C4(N222)2][Br]2 | 923.25 | 213.75 | 249.63 | I | M | |||
[C2(N112)2][Tf2N]2 | 734.62 | 187 | 355 | I | M | |||
[C2(N114)2][Tf2N]2 | 790.73 | 125 | 342 | I | M | |||
[C2(N116)2][Tf2N]2 | 846.84 | 84 | 373 | I | M | |||
[C2(N118)2][Tf2N]2 | 902.94 | 80 | 382 | I | M | |||
[C3(N112)2][Tf2N]2 | 748.65 | 178 | 377 | I | M | |||
[C3(N113)2][Tf2N]2 | 776.70 | 124 | 362 | I | M | |||
[C3(N114)2][Tf2N]2 | 804.76 | 61 | 364 | I | M | |||
[C3(N115)2][Tf2N]2 | 832.81 | 51 | 363 | I | M | |||
[C3(N116)2][Tf2N]2 | 860.86 | 64 | 378 | I | M | |||
Physicochemical Properties of Symmetrical Imidazolium and Pyrrolidinium DILs | ||||||||
Ionic liquid | MW (g·mol-1) | MP(oC) | Td (oC) | Density (g·cm-3) | Viscosity | Miscibilitya | ECW (V) | |
water | ACN | |||||||
[C3(N117)2][Tf2N]2 | 888.92 | 47 | 389 | I | M | |||
[C3(N118)2][Tf2N]2 | 916.97 | 47 | 357 | I | M | |||
[C6(N112)2][Tf2N]2 | 790.73 | 45 | 413 | I | M | |||
[C6(N114)2][Tf2N]2 | 846.84 | 86 | 401 | I | M | |||
[C6(N116)2][Tf2N]2 | 902.94 | 51 | 409 | I | M | |||
[C6(N118)2][Tf2N]2 | 959.05 | 409 | 1.17 | I | M | |||
[C9(N222)2][Tf2N]2 | 889.92 | 410 | 1.25 | I | M | |||
[C12(N222)2][Tf2N] | 930.99 | < -60 | 414 | 1.31 | I | M | ||
Physicochemical Properties of Asymmetrical DILs | ||||||||
[C(mtim)(mim)][Tf2N]2 | 95 | 371 | 1.76 | PM | M | |||
[C(etim)(eim)][Tf2N]2 | 52 | 360 | 1.71 | M | M | |||
[C(btim)(bim)][Tf2N]2 | -45 | 334 | 1.64 | M | M | |||
[C(tfbtim)(tfbim)][Tf2N]2 | 65 | 323 | 1.76 | M | M | |||
[C(etim)(mim)][Tf2N]2 | 65 | 348 | 1.73 | PM | M | |||
[C(btim)(mim)][Tf2N]2 | -32 | 319 | 1.64 | M | M | |||
[C(btim)(mim)][PF6]2 | 150 | 282 | 1.66 | PM | M | |||
[C(tfbtim)(mim)][Tf2N]2 | 72 | 319 | 1.75 | M | M | |||
[C(mtim)(bim)][Tf2N]2 | -37 | 330 | 1.69 | M | M | |||
[C(etim)(bim)][Tf2N]2 | -41 | 348 | 1.67 | M | M | |||
[C(tfbtim)(bim)][Tf2N]2 | -21 | 335 | 1.68 | M | M | |||
[C5(tma)(mim)][Tf2N]2 | 771.2 | -51.5 | 301.5 | 1.54 | 357 cSt | I | ||
[C5(tma)(hyeim)][Tf2N]2 | 801.2 | -54.2 | 132.9 | 1.54 | 398 cSt | I | M | |
[C5(tma)(bim)][Tf2N]2 | 813.2 | -53 | 389 | 1.47 | 527 cSt | I | M | |
[C5(tma)(benzim)][Tf2N]2 | 847.3 | -36.2 | 328 | 1.50 | 1217 cSt | I | M | |
[C5(tma)(bpy)][Tf2N]2 | 816.3 | 30 ~ 32 | 356.8 | 1.46 | I | M | ||
[C5(bpy)2][Tf2N]2 | 884.4 | 36 ~ 38 | 309.5 | 1.47 | I | M | ||
[C5(tma)(mim)][Br]2 | 371.1 | 115 ~ 116 | 90.5 | 1.37 | M | I | ||
[C5(tma)(mim)][PF6]2 | 501.3 | 86 ~ 88 | 312.4 | 1.57 | I | I | ||
[C5(tma)(mim)][BF4]2 | 385.0 | >50, <80 | 336.9 | M | I | |||
[C5(tma)(mim)][TfO]2 | 509.5 | 153 ~ 156 | 315.9 | 1.50 | M | I | ||
[MIC2N111][TFSI]2 | 729.64 | 133 | 360 | 4 ~ 5 | ||||
[MIC5N111][TFSI]2 | 771.64 | 420 | 1.47 | 4 ~ 5 | ||||
Physicochemical Properties of Heteroanionic DILs | ||||||||
[C3(Py)(mim)][PF6][Br] | 150 ~ 151 | 252 | M | I | ||||
[C3(Py)(tea)][PF6][Br] | 180 ~ 181 | 244 | M | I | ||||
[C3(Py)(mim)][Tf2N][Br] | 34 ~ 35 | 246 | M | I | ||||
[C3(Py)(tem)][Tf2N][Br] | 76 ~ 77 | 240 | M | I | ||||
[C3(Py)(mpy)][Tf2N][Br] | 92 ~ 93 | 249 | M | I | ||||
[C4(mim)2][Br]2 | 435.96 | 167 | 297 | M | M | |||
[C4(mim)2][AOT]2 | 1118.72 | 68 | 7.176 Pa·s | I | M | |||
[C4(mim)2][FeCI3Br]2 | 760.4 | 52 | 0.2 Pa·s | M | M | |||
Physicochemical Properties of Dianionic DILs | ||||||||
[Hmim]2[B12Cl12] | 153 | 1.686 | I | M | ||||
Physicochemical Properties of Symmetrical Imidazolium and Pyrrolidinium DILs | ||||||||
Ionic liquid | MW (g·mol-1) | MP (oC) | Td (oC) | Density (g·cm-3) | Viscosity | Miscibilitya | ECW (V) | |
water | ACN | |||||||
[C2mim]2[B12Cl12] | 265 | 480 | 1.614 | I | M | |||
[C3mim]2[B12Cl12] | 269 | 1.596 | I | M | ||||
[C4mim]2[B12Cl12] | 131 | 1.553 | I | M | ||||
[C8mim]2[B12Cl12] | 127 | 1.387 | I | M | ||||
[C10mim]2[B12Cl12] | 174 | 1.428 | I | M | ||||
[C16mim]2[B12Cl12] | 105 | I | M | |||||
[Bnmim]2[B12Cl12] | 256 | 1.761 | I | M | ||||
[C4C1mim]2[B12Cl12] | 236 | 1.517 | I | M | ||||
[HEmim]2[B12Cl12] | 275 | 412 | 1.671 | I | M | |||
[N2224]2[B12Cl12] | > 300 | 444 | 1.457 | I | M | |||
[N2226]2[B12Cl12] | 221 | 1.658 | I | M | ||||
[N11116]2[B12Cl12] | 104 | 158 | 1.216 | I | M | |||
[N222HE]2[B12Cl12] | 295 | 390 | 1.563 | I | M | |||
[PyC4]2[B12Cl12] | 222 | 398 | 1.683 | I | M | |||
[Pppp2]2[B12Cl12] | 293 | 494 | 1.656 | I | M | |||
[C4(mim)2][C0(CO2)2] | 308.33 | -7.33 | 230 | M | I | |||
[C4(mim)2][C1(CO2)2] | 322.3596 | -0.78 | 207 | 1.24 | M | I | ||
[C4(mim)2][C2(CO2)2] | 336.3862 | -29.35 | 235 | M | I | |||
[C4(mim)2][C3(CO2)2] | 350.4127 | 2.47 | 249 | M | I | |||
[C4(mim)2][C4(CO2)2] | 364.4393 | -27.4 | 231 | M | I | |||
[C4(mim)2][C5(CO2)2] | 378.4659 | -13.34 | 244 | 1.15 | M | I | ||
[C6(mim)2][C0(CO2)2] | 336.3862 | -29.45 | 228 | M | I | |||
[C6(mim)2][C1(CO2)2] | 350.4127 | -9.36 | 235 | 1.20 | M | I | ||
[C6(mim)2][C2(CO2)2] | 364.4393 | -1.02 | 235 | M | I | |||
[C6(mim)2][C3(CO2)2] | 378.4659 | -10.78 | 243 | M | I | |||
[C6(mim)2][C4(CO2)2] | 392.4925 | -7.06 | 238 | M | I | |||
[C6(mim)2][C5(CO2)2] | 406.5191 | -18.19 | 245 | 1.12 | M | I | ||
[C8(mim)2][C0(CO2)2] | 364.4393 | -34 | 226 | M | I | |||
[C8(mim)2][C1(CO2)2] | 378.4659 | -8.48 | 218 | M | I | |||
[C8(mim)2][C2(CO2)2] | 392.4925 | -7.73 | 234 | M | I | |||
[C8(mim)2][C3(CO2)2] | 406.5191 | -31.36 | 239 | M | I | |||
[C8(mim)2][C4(CO2)2] | 420.5456 | -5.74 | 240 | M | I | |||
[C8(mim)2][C5(CO2)2] | 434.5722 | -14.45 | 238 | M | I | |||
[C10(mim)2][C0(CO2)2] | 392.4925 | -12.12 | 223 | M | I | |||
[C10(mim)2][C1(CO2)2] | 406.5191 | -11.94 | 218 | M | I | |||
[C10(mim)2][C2(CO2)2] | 420.545 | 3.23 | 236 | M | I | |||
[C10(mim)2][C3(CO2)2] | 434.5722 | 239 | M | I | ||||
[C10(mim)2][C4(CO2)2] | 448.5988 | -1.65 | 237 | M | I | |||
[C10(mim)2][C5(CO2)2] | 462.6254 | 0.7 | 232 | M | I |
Physiochemical Properties of TTILs | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ionic liquid | MW (g·mol-1) | MP (oC) | Td (oC) | Density (g·cm-3) | Viscosity | Miscibilitya | ECW (V) | |||||||||
water | ACN | |||||||||||||||
[Me3Benz(bmim)3][Tf2N]3 | 1372.3 | 66 ~ 69 | 300 | 1.55 | I | M | ||||||||||
[Me3Benz(mmim)3][Tf2N]3 | 1246 | 82 ~ 85 | 338 | 1.69 | I | M | ||||||||||
[Benz(bmim)3][Tf2N]3 | 1330.2 | -24.6 | 344 | 1.53 | 2320 (cSt) | I | M | |||||||||
[Benz(mmim)3][Tf2N]3 | 1203.9 | -38.6 | 364 | 1.56 | 1280 (cSt) | I | M | |||||||||
[Benz(benzmim)3][Tf2N]3 | 1432.2 | -87.4 | 262 | 1.55 | 20000 ~ 25000(cSt) | I | M | |||||||||
[Benz(bmpy)3][Tf2N]3 | 1339.3 | 62 ~ 64 | 344 | 1.44 | I | M | ||||||||||
[N(beim)3][Tf2N]3 | 1311.2 | -47.5 | 308 | 1.41 | 1580 (cSt) | I | M | |||||||||
[N(meim)3][Tf2N]3 | 1184.9 | 36 ~ 37 | 338 | 1.56 | I | M | ||||||||||
[N(bepy)3][Tf2N]3 | 1320.3 | 57 ~ 58 | 297 | 1.47 | I | M | ||||||||||
[N(CH2CH2OHeim)3][Tf2N]3 | 1275 | -38.5 | 344 | 1.64 | 7980 (cSt) | I | M | |||||||||
[Me3Benz(bmim)3][PF6]3 | 924.6 | 141 ~ 143 | 246 | 1.49 | I | M | ||||||||||
[Me3Benz(bmim)3][TFO]3 | 937 | 63 ~ 65 | 316 | 1.47 | M | M | ||||||||||
[Me3Benz(bmim)3][BF4]3 | 750.1 | 130 ~ 133 | 302 | 1.41 | M | M | ||||||||||
[N(beim)3][PF6]3 | 905.6 | 195 ~ 197 | 309 | 1.33 | I | M | ||||||||||
[N(beim)3][TFO]3 | 917.9 | 64.2 | 253 | 1.33 | M | M | ||||||||||
[N(beim)3][BF4]3 | 731.1 | 101 ~ 104 | 274 | 1.21 | M | M | ||||||||||
[C6O3(mim)3][Tf2N]3 | 300 | I | M | 4 | ||||||||||||
[C6O3(dmapy)3][Tf2N]3 | 340 | I | M | 5 | ||||||||||||
Physiochemical Properties of LTILs | ||||||||||||||||
[C10(mim)3][Tf2N]3 | 1352.25 | -53.58 | 334 | 1.65 | 1800 (cSt) | I | M | |||||||||
[C10(mim)3][Tf2N]3 | 1435.29 | -53.17 | 350 | 1.54 | 2400 (cSt) | I | M | |||||||||
[C10(benzim)3][Tf2N]3 | 1504.44 | -36.61 | 320 | 1.36 | 4200 (cSt) | I | M | |||||||||
[C10(bim)3][BF4]3 | 856.55 | -18.32 | 191 | 1.33 | M | M | ||||||||||
[C10(bim)3][TFO]3 | 1043.18 | -42.63 | 290 | 1.28 | M | M | ||||||||||
[C6(mim)3][Tf2N]3 | 1240.03 | -57.85 | 320 | 1.57 | 372 (cSt) | I | M | |||||||||
[C6(bim)3][Tf2N]3 | 1324.19 | -51.54 | 330 | 1.41 | 429 (cSt) | I | M | |||||||||
[C6(benzim)3][Tf2N]3 | 1391.14 | -36.83 | 340 | 1.43 | 840 (cSt) | I | M | |||||||||
[C3(mim)3][Tf2N]3 | 1155.88 | -24.54 | 290 | 1.54 | 1200 (cSt) | I | M | |||||||||
[C3(bim)3][Tf2N]3 | 1240.04 | -44.13 | 310 | 1.48 | 600 (cSt) | I | M | |||||||||
[C3(benzim)3][Tf2N]3 | 1308.07 | -27.26 | 300 | 1.41 | 4080 (cSt) | I | M | |||||||||
[C2(Morp)(im)(Morp)][(2MsO)2(Cl)] | 523.06 | 298.3 | 1.283 | 444.29± 16.77(cP) | M | M | ||||||||||
[C2(2MeAP)(im)(2MeAP)][(2MsO)2(Cl)] | 593.16 | 280.6 | 1.274 | 10807.88± 510.33(cP) | PM | M | ||||||||||
[C2(Morp)(im)(Morp)][(2PhsO)2(Cl)] | 647.20 | 331.1 | 1.274 | 5368.37± 6.21(cP) | M | M | ||||||||||
[C2(MePip)(im)(MePip)][(2MsO)(Cl) (2PhsO)] | 673.29 | 351.2 | 1.215 | 6421.29± 417.93 (cP) | M | M | ||||||||||
[C2(2MeAP)(im)(2MeAP)][(2PhsO)2(Cl)] | 717.30 | 342.6 | 1.301 | 13922.29± 611.31 (cP) | I | M | ||||||||||
[C2(mim)3][(PhsO)(Cl)(2PhsO)] | 637.17 | 338.5 | 1.304 | 2839.03± 5.66(cP) | M | M | ||||||||||
[C2(MorP)(im)(MorP)][(2PhsO)2(OAc)] | 670.79 | 342.8 | 1.272 | 2249± 7.51(cP) | I | M | ||||||||||
Physiochemical Properties of TTILs | ||||||||||||||||
Ionic liquid | MW (g·mol-1) | MP (oC) | Td (oC) | Density (g·cm-3) | Viscosity | Miscibilitya | ECW (V) | |||||||||
water | ACN | |||||||||||||||
[C2(MePip)(im)(MePip)][(2PhsO)2(OAc)] | 696.88 | 345.6 | 1.186 | 3632.37± 29.93 (cP) | I | M | ||||||||||
[C2(2MeAP)(im)(2MeAP)] [(2PhsO)2(OAc)] | 740.89 | 338.0 | 1.277 | 4049.49± 127(cP) | PM | M | ||||||||||
[C2(mim)3][(2PhsO)2(OAc)] | 660.76 | 347.4 | 1.278 | 3687.69± 23.4(cP) | I | M | ||||||||||
[C2(MorP)(im)(MorP)] [(2PhsO)2(CF3OAc)] | 724.76 | 352.5 | 1.278 | 2859.14± 7.44(cP) | I | M | ||||||||||
[C2(MePip)(im)(MePip)] [(2PhsO)2(CF3OAc)] | 750.85 | 350.2 | 1.241 | 4948.51± 13.49(cP) | I | M | ||||||||||
[C2(2MeAP)(im)(2MeAP)] [(2PhsO)2(CF3OAc)] | 794.86 | 333.8 | 1.292 | 4321.17± 12.85(cP) | I | M | ||||||||||
[C2(mim)3][(2PhsO)2(CF3OAc)] | 714.73 | 307.7 | 1.297 | 1360.17± 10.37(cP) | I | M | ||||||||||
[C2(MorP)(im)(MorP)][2PhsO]3 | 782.94 | 337.9 | 1.279 | 3888.43± 37.06(cP) | I | M | ||||||||||
[C2(2MePip)(im)(2MePip)][2PhsO]3 | 853.04 | 1.269 | 1475.29± 122.27 (cP) | M | M | |||||||||||
[C2(mim)3][2PhsO]3 | 772.91 | 1.172 | 11124.29±144.35 (cP) | I | M |
[1] | Koohi-Fayegh S, Rosen M A. A review of energy storage types, applications and recent developments[J]. J. Energy Storage, 2020, 27: 101047. |
[2] | Abbas Q, Mirzaeian M, Hunt M R C, Hall P, Raza R. Current state and future prospects for electrochemical energy storage and conversion systems[J]. Energies, 2020, 13(21): 5847. |
[3] | Behabtu H A, Messagie M, Coosemans T, Berecibar M, Anlay Fante K, Kebede A A, Mierlo J V. A review of energy storage technologies’ application potentials in renewable energy sources grid integration[J]. Sustainability, 2020, 12(24): 10511. |
[4] | Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin?[J]. Science, 2014, 343: 1210-1211. |
[5] | Yang Y S. A review of electrochemical energy storage researches in the past 22 years[J]. J. Electrochem., 2020, 26(4): 443-463. |
[6] | Daud M Z, Mohamed A, Hannan M A. An improved control method of battery energy storage system for hourly dispatch of photovoltaic power sources[J]. Energy Convers. Manage., 2013, 73: 256-270. |
[7] | Hannan M A, Lipu M, Hussain A, Mohamed A. A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: challenges and recommendations[J]. Renew. Sustain Energy Rev., 2017, 78: 834-854. |
[8] | Niu H Z, Wang L, Guan P, Zhang N, Yan C R, Ding M L, Guo X L, Huang T T, Hu X L. Recent advances in application of ionic liquids in electrolyte of lithium ion batteries[J]. J. Energy Storage, 2021, 40: 102659. |
[9] | Arbizzani C, Gabrielli G, Mastragostino M. Thermal stability and flammability of electrolytes for lithium-ion batteries[J]. J. Power Sources, 2011, 196(10): 4801-4805. |
[10] |
Lin X, Salari M, Arava L M R, Ajayan P M, Grinstaff M W. High temperature electrical energy storage: Advances, challenges, and frontiers[J]. Chem. Soc. Rev., 2016, 45(21): 5848-5887.
pmid: 27775120 |
[11] | Wang Q S, Jiang L H, Yu Y, Sun J H. Progress of enhancing the safety of lithium ion battery from the electrolyte aspect[J]. Nano Energy, 2019, 55: 93-114. |
[12] | Huang S F, Zhu X L, Sarkar S, Zhao Y F. Challenges and opportunities for supercapacitors[J]. APL Mater., 2019, 7(10): 100901. |
[13] | Chen Y Q, Kang Y Q, Zhao Y, Wang L, Liu J L, Li Y X, Liang Z, He X M, Li X, Tavajohi N, Li B H. A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards[J]. J. Energy Chem., 2021, 59: 83-99. |
[14] | Zhang Q K, Zhang X Q, Yuan H, Huang J Q. Thermally stable and nonflammable electrolytes for lithium metal batteries: Progress and perspectives[J]. Small Science, 2021, 1(10): 2100058. |
[15] |
Poonam, Sharma K, Arora A, Tripathi S K. Review of supercapacitors: Materials and devices[J]. J. Energy Storage, 2019, 21: 801-825.
doi: 10.1016/j.est.2019.01.010 |
[16] | Sharma P, Kumar V. Current technology of supercapacitors: A review[J]. J. Electron. Mater., 2020, 49(6): 3520-3532. |
[17] |
Horn M, MacLeod J, Liu M, Webb J, Motta N. Supercapacitors: A new source of power for electric cars?[J]. Econ. Anal. Policy, 2019, 61: 93-103.
doi: 10.1016/j.eap.2018.08.003 |
[18] | Wang R, Yao M J, Niu Z Q. Smart supercapacitors from materials to devices[J]. InfoMat, 2020, 2(1): 113-125. |
[19] | Ma H L, Zhang Y Y, Shen M H. Application and prospect of supercapacitors in internet of energy(IOE)[J]. J. Energy Storage, 2021, 44: 103299. |
[20] | Yang Y C, Han Y H, Jiang W K, Zhang Y Y, Xu Y M, Ahmed A M. Application of the supercapacitor for energy storage in china: Role and strategy[J]. Appl. Sci.-Basel, 2022, 12(1): 354. |
[21] |
Wang Y G, Song Y F, Xia Y Y. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications[J]. Chem. Soc. Rev., 2016, 45(21): 5925-5950.
pmid: 27545205 |
[22] |
Miller J R, Simon P. Materials science. Electrochemical capacitors for energy management[J]. Science, 2008, 321(5889): 651-652.
doi: 10.1126/science.1158736 pmid: 18669852 |
[23] | Pal B, Yang S Y, Ramesh S, Thangadurai V, Jose R. Ele-ctrolyte selection for supercapacitive devices: A critical review[J]. Nanoscale Adv., 2019, 1(10): 3807-3835. |
[24] |
Zhang J Y, Yao X H, Misra R K, Cai Q, Zhao Y L. Pro-gress in electrolytes for beyond-lithium-ion batteries[J]. J. Mater. Sci. Technol., 2020, 44: 237-257.
doi: 10.1016/j.jmst.2020.01.017 |
[25] | Tang X, Lv S Y, Jiang K, Zhou G H, Liu X M. Recent development of ionic liquid-based electrolytes in lithium-ion batteries[J]. J. Power Sources, 2022, 542: 231792. |
[26] |
Yu L P, Chen G Z. Ionic liquid-based electrolytes for supercapacitor and supercapattery[J]. Front. Chem., 2019, 7: 272.
doi: 10.3389/fchem.2019.00272 pmid: 31058143 |
[27] | Lauw Y, Horne M D, Rodopoulos T, Nelson A, Leermakers F A M. Electrical double-layer capacitance in room temperature ionic liquids: Ion-size and specific adsorption effects[J]. J. Phys. Chem. B, 2010, 114(34): 11149-11154. |
[28] | Lamperski S, Outhwaite C W, Bhuiyan L B. The electric double-layer differential capacitance at and near zero surface charge for a restricted primitive model electrolyte[J]. J. Phys. Chem. B, 2009, 113(26): 8925-8929. |
[29] | Pinilla C, Del Popolo M G, Kohanoff J, Lynden-Bell R M. Polarization relaxation in an ionic liquid confined between electrified walls[J]. J. Phys. Chem. B, 2007, 111(18): 4877-4884. |
[30] | Baldelli S. Surface structure at the ionic liquid-electrified metal interface[J]. Acc. Chem. Res., 2008, 41(3): 421-431. |
[31] | Wang Y L, Li B, Sarman S, Mocci F, Fayer M D. Micro-structural and dynamical heterogeneities in ionic liquids[J]. Chem. Rev., 2020, 120: 5798-5877. |
[32] | Wang X H, Salari M, Jiang D E, Varela J C, Anasori B, Wesolowskl D J, Dai S, Grinstaff M W, Gogotsi Y. Electrode material-ionic liquid coupling for electrochemical energy storage[J]. Nat. Rev. Mater., 2020, 5(11): 787-808. |
[33] |
Anderson J L, Ding R F, Ellern A, Armstrong D W. Structure and properties of high stability geminal dicationic ionic liquids[J]. J. Am. Chem. Soc., 2005, 127(2): 593-604.
pmid: 15643883 |
[34] | Liu Q B, Rantwijk F V, Sheldon R A. Synthesis and application of dicationic ionic liquids[J]. J. Chem. Technol. Biotechnol., 2006, 81: 401-405. |
[35] |
Guglielmero L, Mezzetta A, Guazzelli L, Pomelli C S, D’Andrea F, Chiappe C. Systematic synthesis and properties evaluation of dicationic ionic liquids, and a glance into a potential new field[J]. Front. Chem., 2018, 6: 612.
doi: 10.3389/fchem.2018.00612 pmid: 30619821 |
[36] | Bhatt D R, Maheria K C, Parikh J K. A microwave assisted one pot synthesis of novel ammonium based dicationic ionic liquids[J]. RSC Adv., 2015, 5(16): 12139-12143. |
[37] | Zhang Z X, Yang L, Luo S C, Tian M, Tachibana K, Kamijima K. Ionic liquids based on aliphatic tetraalkylammonium dications and TFSI anion as potential electrolytes[J]. J. Power Sources, 2007, 167: 217-222. |
[38] |
Wang R, Jin CM, Twamley B, Shreeve J M. Syntheses and characterization of unsymmetric dicationic salts incorporating imidazolium and triazolium functionalities[J]. Inorg. Chem., 2006, 45: 6396-6403.
pmid: 16878951 |
[39] | Payagala T, Huang J, Breitbach Z S, Sharma P S, Armstrong D W. Unsymmetrical dicationic ionic liquids: Manipuation of physicochemical properties using specific structural architectures[J]. Chem. Mater., 2007, 19: 5848-5850. |
[40] | Chang J C, Ho W Y, Sun I W, Tung Y L, Tsui M C, Wu T Y, Liang S S. Synthesis and characterization of dicationic ionic liquids that contain both hydrophilic and hydrophobic anions[J]. Tetrahedron, 2010, 66(32): 6150-6155. |
[41] | Brown P, Butts C P, Eastoe J, Hernandez E P, Machado F L D A, Oliveira R J D. Dication magnetic ionic liquids with tuneable heteroanions[J]. Chem. Commun., 2013, 49: 2765. |
[42] | Zhou N, Zhao G Y, Dong K, Sun J, Shao H W. Investigations on a series of novel ionic liquids containing the [closo-B12Cl12]2- dianion[J]. RSC Adv., 2012, 2: 9830-9838. |
[43] | Kuhn B L, Osmari B F, Heinen T M, Bonacorso HG, Zanatta N, Nielsen S O, Ranathunga D T S, Villetti M A, Frizzo C P. Dicationic imidazolium-based dicarboxylate ionic liquids: Thermophysical properties and solubility[J]. J. Mol. Liq., 2020, 308: 112983. |
[44] | Sharma P S, Payagala T, Wanigasekara E, Wijeratne A B, Huang J M, Armstrong D W. Trigonal tricationic ionic liquids: Molecular engineering of trications to control physicochemical properties[J]. Chem. Mater., 2008, 20(13): 4182-4184. |
[45] | Wanigasekara E, Zhang X T, Nanayakkara Y, Payagala T, Moon H, Armstrong D W. Linear tricationic room-temperature ionic liquids: Synthesis, physiochemical properties, and electrowetting properties[J]. ACS Appl. Mater. Interfaces, 2009, 1(10): 2126-2133. |
[46] | López F I, Ibarra-Sanchez L, Domínguez-Esquivel J M, Miranda-Olvera A D, Bravo R H, Lagunas-Rivera S. Experimental and theoretical study on the synthesis and thermophysical properties of newer tricationic ionic liquids[J]. J. Mol. Struct., 2022, 1263: 133164. |
[47] |
Mogurampelly S, Keith J R, Ganesan V. Mechanisms underlying ion transport in polymerized ionic liquids[J]. J. Am. Chem. Soc., 2017, 139(28): 9511-9514.
doi: 10.1021/jacs.7b05579 pmid: 28686437 |
[48] | Yuan J, Mecerreyes D, Antonietti M. Poly(ionic liquid)s: An update[J]. Prog. Polym. Sci., 2013, 38(7): 1009-1036. |
[49] | Mecerreyes D. Polymeric ionic liquids: Broadening the properties and applications of polyelectrolytes[J]. Prog. Polym. Sci., 2011, 36(12): 1629-1648. |
[50] | Qian W, Texter J, Feng Y. Frontiers in poly(ionic liquid)s: Syntheses and applications[J]. Chem. Soc. Rev., 2017, 46.(4): 1124-1159 |
[51] |
Matsumoto M, Saito Y, Park C Y, Fukushima T, Aida T. Ultrahigh-throughput exfoliation of graphite into pristine ‘single-layer’ graphene using microwaves and molecularly engineered ionic liquids[J]. Nat. Chem., 2015, 7: 730-736.
doi: 10.1038/nchem.2315 pmid: 26291945 |
[52] |
Matsumoto M, Shimizu S, Sotoike R, Watanabe M, Iwasa Y, Aida T. Exceptionally high electric double layer capacitances of oligomeric ionic liquids[J]. J. Am. Chem. Soc., 2017, 139(45): 16072-16075.
doi: 10.1021/jacs.7b09156 pmid: 29019662 |
[53] | Vélez J F, Vázquez-Santos M B, Amarilla J M, Herradón B, Morales E. Geminal pyrrolidinium and piperidinium dicationic ionic liquid electrolytes. Synthesis, characterization and cell performance in LiMn2O4 rechargeable lithium cells[J]. J. Power Sources, 2019, 439: 227098. |
[54] | Zhang Z X, Zhou H Y, Yang L, Tachibana K, Kamijima K, Jian X. Asymmetrical dicationic ionic liquids based on both imidazolium and aliphatic ammonium as potential electrolyte additives applied to lithium secondary batteries[J]. Electrochim. Acta, 2008, 53(14): 4833-4838. |
[55] | Li S, Zhu M Y, Feng G. The effects of dication symmetry on ionic liquid electrolytes in supercapacitors[J]. J. Phys.: Condens. Matter., 2016, 28: 464005. |
[56] | Li S, Feng G, Cummings P T. Interfaces of dicationic ionic liquids and graphene: a molecular dynamics simulation study[J]. J. Phys. Condens. Matter, 2014, 26(28): 284106. |
[57] | Li S, Van Aken K L, McDonough J K, Feng G, Gogotsi Y, Cummings P T. The electrical double layer of dicationic ionic liquids at onion-like carbon surface[J]. J. Phys. Chem. C, 2014, 118: 3901-3909. |
[58] | Costa R, Pereira C M, Silva A F. Dicationic ionic liquid: Insight in the electrical double layer structure at mercury, glassy carbon and gold surfaces[J]. Electrochim. Acta, 2014, 116: 306-313. |
[59] | Li D D, Yang Y R, Wang X D, Feng G. Electrical double layer of linear tricationic ionic liquids at graphite electrode[J]. J. Phys. Chem. C, 2020, 124: 15723-15729. |
[60] | Lian C, Su H, Liu H, Wu J Z. Electrochemical behavior of nanoporous supercapacitors with oligomeric ionic liquids[J]. J. Phys. Chem. C, 2018, 122(26): 14402-14407. |
[61] | Yeganegi S, Soltanabadi A, Farmanzadeh D. Molecular dynamic simulation of dicationic ionic liquids: Effects of anions and alkyl chain length on liquid structure and diffusion[J]. J. Phys. Chem. B, 2012, 116(37): 11517-11526. |
[62] | Farmanzadeh D, Soltanabadi A, Yeganegi S. DFT study of the geometrical and electronic structures of geminal dicationic ionic liquids 1,3-bis[3-methylimidazolium-1-yl] hexane halides[J]. J. Chin. Chem. Soc., 2013, 60(5): 551-558. |
[63] | Sedghamiz E, Khashei F, Moosavi M. Linear tricationic ionic liquids: Insights into the structural features using DFT and molecular dynamics simulation[J]. J. Mol. Liq., 2018, 271: 96-104. |
[64] | Lopes J N C, Padua A A H. Molecular force field for ionic liquids composed of triflate or bistriflylimide anions[J]. J. Phys. Chem. B, 2004, 108(43): 16893-16898. |
[65] | Li S, Feng G, Cummings P T. Interfaces of dicationic ionic liquids and graphene: A molecular dynamics simulation study[J]. J. Phys.: Condens. Matter, 2014, 26(28): 284106. |
[66] | Lopes J N C, Deschamps J, Padua A A H. Modeling ionic liquids using a systematic all-atom force field[J]. J. Phys. Chem. B, 2004, 108(6): 2038-2047. |
[67] | Sedghamiz E, Moosavi M. Tricationic ionic liquids: Str-uctural and dynamical properties via molecular dynamics simulations[J]. J. Phys. Chem. B, 2017, 121(8): 1877-1892. |
[68] | Torkzadeh M, Moosavi M. Heterogeneity in microstructures and dynamics of dicationic ionic liquids with symmetric and asymmetric cations-sciencedirect[J]. J. Mol. Liq., 2021, 330: 115632. |
[69] | Bodo E, Chiricotto M, Caminiti R. Structure of geminal imidazolium bis(trifluoromethylsulfonyl)imide dicationic ionic liquids: A theoretical study of the liquid phase[J]. J. Phys. Chem. B, 2011, 115(49): 14341-14347. |
[70] | Khakan H, Yeganegi S. Molecular dynamics simulations of amide functionalized imidazolium bis(trifluoromethan-esulfonyl)imide dicationic ionic liquids[J]. J. Phys. Chem. B, 2017, 121(31): 7455-7463. |
[71] | Prado C E R, Freitas L C G. Molecular dynamics simulation of the room-temperature ionic liquid 1-butyl-3-met-hylimidazolium tetrafluoroborate[J]. Theochem-J. Mol. Struct., 2007, 847(1-3): 93-100. |
[72] | Tariq M, Forte P A S, Costa Gomes M F, Canongia Lopes J N, Rebelo L P N. Densities and refractive indices of imidazolium and phosphonium based ionic liquids: Effect of temperature, alkyl chain length and anion[J]. J. Chem. Thermodyn., 2009, 41(6): 790-798. |
[73] |
Mahapatra A, Chakraborty M, Barik S, Sarkar M. Comparison between pyrrolidinium-based and imidazolium-based dicationic ionic liquids: Intermolecular interaction, structural organization, and solute dynamics[J]. Phys. Chem. Chem. Phys., 2021, 23: 21029.
doi: 10.1039/d1cp02790e pmid: 34522923 |
[74] | Moosavi M, Khashei F, Sharifi A, Mirzaei M. Transport properties of short alkyl chain length dicationic ionic liquids—the effects of alkyl chain length and temperature[J]. Ind. Eng. Chem. Res., 2016, 55(33): 9087-9099. |
[75] | Ishida T, Shirota H. Dicationic versus monocationic ionic liquids: Distinctive ionic dynamics and dynamical heterogeneity[J]. J. Phys. Chem. B, 2013, 117(4): 1136-1150. |
[76] |
Chatterjee K, Pathak A D, Lakma A, Sharma C S, Singh A K. Synthesis, characterization and application of a non-flammable dicationic ionic liquid in lithium-ion battery as electrolyte additive[J]. Sci. Rep., 2020, 10(1): 9606.
doi: 10.1038/s41598-020-66341-x pmid: 32541876 |
[77] | Vélez J F, Vazquez-Santos M B, Amarilla J M, Tartaj P, Morales E. Asymmetrical imidazolium-trialkylammonium room temperature dicationic ionic liquid electrolytes for Li-ion batteries[J]. Electrochim. Acta, 2018, 280: 171-180. |
[78] |
Hossein H, Gildeh S F G, Ghauri K, Fathei P. Physicochemical properties of the imidazolium-based dicationic ionic liquids (DILs) composed of ethylene π-spacer by changing the anions: A quantum chemical approach[J]. Ionics, 2020, 26: 1963-1988.
doi: 10.1007/s11581-019-03325-6 |
[79] | Yeganegi S, Sokhanvaran V, Soltanabadi A. Study of thermodynamic properties of imidazolium-based ionic liquids and investigation of the alkyl chain length effect by molecular dynamics simulation[J]. Mol. Simul., 2013, 39(13): 1070-1078. |
[80] | Li D D, Li E C, Yang Y R, Wang X D, Feng G. Structure and capacitance of electrical double layers in tricationic ionic liquids with organic solvents[J]. J. Phys. Chem. B, 2021, 125(46): 12753-12762. |
[81] | Sun H, Zhang D J, Liu C B, Zhang C Q. Geometrical and electronic structures of the dication and ion pair in the geminal dicationic ionic liquid 1,3-bis[3-methylimidazolium-yl]propane bromide[J]. Theochem-J. Mol. Struct., 2009, 900(1-3): 37-43. |
[82] | Alavi S M, Yeganegi S. Computational study of halogen-free boron based dicationic ionic liquids of [bis-mim][bmb]2 and [bis-mim][bscb]2[J]. Spectrochim. Acta, Part A, 2019, 210: 181-192. |
[83] | Li S, Feng G, Bañuelos J L, Rother G, Fulvio P F, Dai S, Cummings P T. Distinctive nanoscale organization of dicationic versus monocationic ionic liquids[J]. J. Phys. Chem. C, 2013, 117(35): 18251-18257. |
[84] |
Li S, Bañuelos J L, Zhang P F, Feng G, Dai S, Rother G, Cummings P T. Toward understanding the structural heterogeneity and ion pair stability in dicationic ionic liquids[J]. Soft Matter, 2014, 10(45): 9193-9200.
doi: 10.1039/c4sm01742k pmid: 25328976 |
[85] | Torkzadeh M, Moosavi M. Probing the effect of side alkyl chain length on the structural and dynamical micro-heterogeneities in dicationic ionic liquids[J]. J. Phys. Chem. B, 2020, 124(50): 11446-11462. |
[86] |
Serva A, Migliorati V, Lapi A, Aquilanti G, Arcovito A, D’Angelo P. Structural properties of geminal dicationic ionic liquid/water mixtures: A theoretical and experimental insight[J]. Phys. Chem. Chem. Phys., 2016, 18(24): 16544-16554.
doi: 10.1039/c6cp01557c pmid: 27272477 |
[87] | Bhargava B L, Klein M L. Nanoscale organization in aqueous dicationic ionic liquid solutions[J]. J. Phys. Chem. B, 2011, 115(35): 10439. |
[88] |
Bhargava B L, Klein M L. Formation of interconnected aggregates in aqueous dicationic ionic liquid solutions[J]. J. Chem. Theory Comput., 2010, 6(3): 873.
doi: 10.1021/ct900674t pmid: 26613314 |
[89] |
Palchowdhury S, Bhargava B L. Effect of spacer chain length on the liquid structure of aqueous dicationic ionic liquid solutions: Molecular dynamics studies[J]. Phys. Chem. Chem. Phys., 2015, 17(17): 11627-11637.
doi: 10.1039/c5cp00873e pmid: 25865828 |
[90] | Li S, Feng G, Cummings P T. The effects of dicationsymmetry on ionic liquid electrolytes in supercapacitors[J]. J. Phys.: Condens. Matter, 2016, 28: 464005. |
[91] | Li S, Zhang P, Pasquale F F, Patrick C H, Feng G, Dai S, Peter T C. Enhanced performance of dicationic ionic liquid electrolytes by organic solvents[J]. J. Phys. Condens. Matter, 2014, 26(28): 284105. |
[92] | Wagner R, Preschitschek N, Passerini S, Leker J, Winter M. Current research trends and prospects among the various materials and designs used in lithium-based batteries[J]. J. Appl. Electrochem., 2013, 43: 481-496. |
[93] | Vélez J F, Santos M B V, Amarilla J M, Herradón B, Morales E. Geminal pyrrolidinium and piperidinium dicationic ionic liquid electrolytes. Synthesis, characterization and cell performance in LiMn2O4 rechargeable lithium cells[J]. J. Power Sources, 2019, 439: 227098. |
[94] | Xiao D W, Dou Q Y, Zhang L, Ma Y L, Shi S Q, Lei S L, Yu H Y, Yan X B. Optimization of organic/water hybrid electrolytes for high-rate carbon-based supercapacitor[J]. Adv. Funct. Mater., 2019, 29(42): 1904136. |
[1] | 左东旭, 李培超. 基于电化学-热-力耦合模型的快速充电下锂离子电池的老化特性分析[J]. 电化学(中英文), 2024, 30(9): 2402061-. |
[2] | 陈露露, 李浩冉, 刘维祎, 王伟. 锂离子电池正极材料原位漫反射光谱电化学研究[J]. 电化学(中英文), 2024, 30(6): 2314006-. |
[3] | 马世花, 尹起, 赵金平. 电解质杂化效应衍生的高性能水系超级电容器[J]. 电化学(中英文), 2024, 30(11): 2408051-. |
[4] | 赵刚, 龚正良, 李益孝, 杨勇. 氧化钨和磷钨酸对LiNi0.96Co0.02Mn0.02O2材料的表面包覆改性研究[J]. 电化学(中英文), 2023, 29(10): 2204281-. |
[5] | 陈思, 郑淞生, 郑雷铭, 张叶涵, 王兆林. 水热法制备锂电池Si@C负极材料的工艺优化研究[J]. 电化学(中英文), 2022, 28(8): 2112221-. |
[6] | 王京玥, 王睿, 王诗琦, 王立帆, 詹纯. 一步固相法合成锂离子电池高镍层状正极材料[J]. 电化学(中英文), 2022, 28(8): 2112131-. |
[7] | 谯渭川, 李芳儒, 肖瑾林, 屈丽娟, 赵晓, 张梦, 庞春雷, 李子坤, 任建国, 贺雪琴. 硅氧材料的膨胀性能研究和改善[J]. 电化学(中英文), 2022, 28(5): 2108121-. |
[8] | 王加义, 郭胜楠, 王新, 谷林, 苏东. 锂离子电池高镍层状氧化物正极结构失效机制[J]. 电化学(中英文), 2022, 28(2): 2108431-. |
[9] | 郭瑞琪, 吴锋, 王欣然, 白莹, 吴川. 多电子反应材料推动高能量密度电池发展:材料与体系创新[J]. 电化学(中英文), 2022, 28(12): 2219011-. |
[10] | 朱振威, 邱景义, 王莉, 曹高萍, 何向明, 王京, 张浩. 人工智能在锂离子电池研发中的应用[J]. 电化学(中英文), 2022, 28(12): 2219003-. |
[11] | 叶珍珍, 张抒婷, 陈鑫祺, 王瑾, 金鹰, 崔超婕, 张磊, 钱陆明, 张刚, 骞伟中. 基于离子液体的超级电容在3 V及65 oC老化条件下的铝碳界面效应[J]. 电化学(中英文), 2022, 28(12): 2219005-. |
[12] | 侯廷政, 陈翔, 蒋璐, 唐城. 当前和下一代锂离子电池电解液的原子尺度微观认识和研究进展[J]. 电化学(中英文), 2022, 28(11): 2219007-. |
[13] | 骆晨旭, 师晨光, 余志远, 黄令, 孙世刚. 富锂锰基层状正极材料的合成及其首周过充下的结构演化[J]. 电化学(中英文), 2022, 28(1): 2006131-. |
[14] | 蔡雪凡, 孙升. 多孔电极电池的循环伏安法模拟[J]. 电化学(中英文), 2021, 27(6): 646-657. |
[15] | 彭依, 张伟, 左防震, 吕浩莹, 洪凯骏. 二硒化钼纳米球储锂和储镁的性能和机理研究[J]. 电化学(中英文), 2021, 27(4): 456-464. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||