欢迎访问《电化学(中英文)》期刊官方网站,今天是

电化学(中英文) ›› 2022, Vol. 28 ›› Issue (11): 2219002.  doi: 10.13208/j.electrochem.2219002

所属专题: “下一代二次电池”专题文章

• 综述 • 上一篇    下一篇

低聚离子液体的体相与界面及其电化学储能应用

李丹丹1,2, 纪翔宇3, 陈明3, 杨燕茹1,2, 王晓东1,2,*(), 冯光3,*()   

  1. 1.华北电力大学可再生能源替代电力系统国家重点实验室, 北京 102206
    2.华北电力大学工程热物理研究中心,北京 102206
    3.华中科技大学能源与动力工程学院, 燃煤国家重点实验室, 湖北 武汉 430074
  • 收稿日期:2022-08-26 修回日期:2022-11-12 出版日期:2022-11-28 发布日期:2022-11-14

Oligomeric Ionic Liquids: Bulk, Interface and Electrochemical Application in Energy Storage

Dan-Dan Li1,2, Xiang-Yu Ji3, Ming Chen3, Yan-Ru Yang1,2, Xiao-Dong Wang1,2,*(), Guang Feng3,*()   

  1. 1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
    2. Research Center of Engineering Thermophysics, North China Electric Power University, Beijing 102206, China
    3. State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
  • Received:2022-08-26 Revised:2022-11-12 Published:2022-11-28 Online:2022-11-14
  • Contact: Xiao-Dong Wang: Tel: (86-10)61771307, E-mail: wangxd99@gmail.com;Guang Feng: Tel: (86)18062636661, E-mail: gfeng@hust.edu.cn

摘要:

近年来,随着单阳离子液体的发展,新型低聚物离子液体被合成并应用。这类离子液体可看作是由几个重复的单阳离子组合而成,可以通过改变阳离子带电基团、间隔连接的长度或种类、末端链的长度以及阴离子种类来获得更多不同的结构。因此,低聚离子液体有更复杂的微观结构和内部相互作用,决定了其多特征的物化性质和电化学特性,有望满足更多对溶剂性能有特定要求的应用。例如,与单阳离子液体相比,低聚离子液体具有更大的可调节性、更宽的液态温度范围、更高的热稳定性等优点,使其在电化学储能设备中得到越来越多的应用,如用作超级电容器和锂离子电池的电解液。在本综述中,我们系统地总结并详细解释了低聚离子液体的性质和结构(包括单个离子的结构和本体液内部的纳米组织)之间的关联,主要是双阳离子液体和三阳离子液体;概括了低聚离子液体作为超级电容器和锂离子电池的电解液的相关研究,重点阐述了由低聚离子液体和不同类型电极组成的双电层的结构和性能,以及与相应单阳离子液体电解液的比较结果;提供了降低低聚离子液体粘度和加速离子扩散的优化措施,提出了低聚离子液体电解液未来可能面临的主要问题和发展前景。

关键词: 聚离子液体, 性质和结构, 超级电容器, 锂离子电池

Abstract:

Over recent years, oligomer ionic liquids (OILs), a novel class of ionic liquids, are becoming preferential electrolytes for high-performance energy-storage devices, such as supercapacitors with enhanced energy density and non-flammable lithium-ion batteries (LIBs). Herein, structures, properties, and their associations of the up-to-the-minute formulated OILs are systematically summarized and elaborately interpreted, especially for dicationic ionic liquids and tricationic ionic liquids. The physicochemical and electrochemical properties of OIL-based electrolytes are presented and analyzed, which are vitally important for supercapacitors and LIBs. Subsequently, the applications of OILs as electrolytes for supercapacitors and LIBs are summarized, with the comparisons of the energy-storage mechanisms and performance between OILs and MILs electrolytes in supercapacitors. Meanwhile, the optimization of the dynamic performance of OILs electrolytes is provided. Finally, the main difficulties and probable perspectives of OIL-based electrolytes are presented for future work. This review would contribute to a deep understanding of OILs and design optimized OIL-based electrolytes for energy storage systems.

Key words: oligomer ionic liquids, properties and structures, supercapacitors, lithium-ion batteries