电化学(中英文) ›› 2021, Vol. 27 ›› Issue (4): 413-422. doi: 10.13208/j.electrochem.200915
张运丰*(), 王佳颖, 李晓洁, 赵诗宇, 何阳, 霍士康, 王雅莹, 谭畅
收稿日期:
2020-09-27
修回日期:
2020-10-10
出版日期:
2021-08-28
发布日期:
2020-11-10
通讯作者:
张运丰
E-mail:zhangyf329@gmail.com
基金资助:
Yun-Feng Zhang*(), Jia-Ying Wang, Xiao-Jie Li, Shi-Yu Zhao, Yang He, Shi-Kang Huo, Ya-Ying Wang, Chang Tan
Received:
2020-09-27
Revised:
2020-10-10
Published:
2021-08-28
Online:
2020-11-10
Contact:
Yun-Feng Zhang
E-mail:zhangyf329@gmail.com
摘要:
锂金属电池作为下一代高比能量电池技术受到人们越来越广泛的关注。然而由锂枝晶生长引发的安全问题是锂金属电池商业化面临的最大挑战之一。具有高锂离子迁移数和离子电导率的聚合物电解质是抑制锂枝晶生长的重要策略之一。本文将季戊四醇四丙烯酸酯和自由基引发剂AIBN添加至商业化电解液中,采用具有单离子传导功能的多孔聚合物电解质为锂金属电池的电解质隔膜,通过在电池内部发生热诱导原位聚合制备三维半互穿网络单离子传导聚合物电解质,达到提高电解质隔膜离子电导率和机械拉伸性能,以及有效抑制锂枝晶生长的目的。通过该策略的实施,成功获得了室温离子电导率0.53 mS·cm-1和锂离子迁移数0.65的良好结果。应用于锂金属电池,证明该电解质能够有效抑制锂枝晶的生长和倍率性能的提高,为锂金属电池的开发提供了良好的解决路径。
张运丰, 王佳颖, 李晓洁, 赵诗宇, 何阳, 霍士康, 王雅莹, 谭畅. 锂金属电池用三维半互穿网络聚合物电解质的制备[J]. 电化学(中英文), 2021, 27(4): 413-422.
Yun-Feng Zhang, Jia-Ying Wang, Xiao-Jie Li, Shi-Yu Zhao, Yang He, Shi-Kang Huo, Ya-Ying Wang, Chang Tan. Preparation of 3D Semi-Interpenetrated Polymer Networks Polymer Electrolyte for Lithium Metal Battery[J]. Journal of Electrochemistry, 2021, 27(4): 413-422.
[1] |
He G, Li Q W, Shen Y L, Ding Y. Flexible amalgam film enables stable lithium metal anodes with high capacities[J]. Angew. Chem. Int. Ed., 2019, 58(51): 18466-18470.
doi: 10.1002/anie.v58.51 URL |
[2] |
Chi S S, Qi X G, Hu Y S, Fan L Z. 3D flexible carbon felt host for highly stable sodium metal anodes[J]. Adv. Energy Mater., 2018, 8(15): 1702764.
doi: 10.1002/aenm.v8.15 URL |
[3] |
Albertus P, Babinec S, Litzelman S, Newman A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries[J]. Nat. Energy, 2018, 3: 16-21.
doi: 10.1038/s41560-017-0047-2 URL |
[4] |
Lin D C, Liu Y Y, Cui Y. Reviving the lithium metal anode for high-energy batteries[J]. Nat. Nanotechnol., 2017, 12(3): 194-206.
doi: 10.1038/nnano.2017.16 URL |
[5] |
Cheng X B, Zhang R, Zhao C Z, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chem. Rev., 2017, 117(15): 10403-10473.
doi: 10.1021/acs.chemrev.7b00115 URL |
[6] |
Xu W, Wang J L, Ding F, Chen X L, Nasybutin E, Zhang Y H, Zhang J G. Lithium metal anodes for rechargeable batteries[J]. Energy Environ. Sci., 2014, 7(2): 513-537.
doi: 10.1039/C3EE40795K URL |
[7] |
Chen Y Z, Elangovan A, Zeng D L, Zhang Y F, Ke H Z, Li J, Sun Y B, Cheng H S. Vertically aligned carbon nanofibers on Cu foil as a 3D current collector for reversible Li plating/stripping toward high-performance Li-S batteries[J]. Adv. Funct. Mater., 2020, 30(4): 1906444.
doi: 10.1002/adfm.v30.4 URL |
[8] |
Nguyen H D, Kim G T, Shi J, Paillard E, Judeinstein P, Lyonnard S, Bresser D, Iojoiu C. Nanostructured multi-block copolymer single-ion conductors for safer high-per-formance lithium batteries[J]. Energy Environ. Sci., 2018, 11(11): 3298-3309.
doi: 10.1039/C8EE02093K URL |
[9] |
He Y, Wang J Y, Zhang Y F, Huo S K, Zeng D L, Lu Y, Liu Z H, Wang D L, Cheng H S. Effectively suppressing lithium dendrite growth via an es-LiSPCE single-ion conducting nano fiber membrane[J]. J. Mater. Chem. A, 2020, 8(5): 2518-2528.
doi: 10.1039/C9TA12783F URL |
[10] |
Liu M, Deng N P, Ju J G, Wang L Y, Wang G, Ma Y L, Kang W M, Yan J. Silver nanoparticle-doped 3D porous carbon nanofibers as separator coating for stable lithium metal anodes[J]. ACS Appl. Mater. Interfaces, 2019, 11(19): 17843-17852.
doi: 10.1021/acsami.9b04122 URL |
[11] |
Wang H, Fan S J, Cao Y L, Yang H X, Ai X P, Zhong F P. Building a cycle-stable Fe-Si alloy/carbon nanocomposite anode for Li-ion batteries through a covalent-bonding method[J]. ACS Appl. Mater. Interfaces, 2020, 12(27): 30503-30509.
doi: 10.1021/acsami.0c08456 URL |
[12] |
Shen Y F, Qian J F, Yang H X, Zhong F P, Ai X P. Chemically prelithiated hard-carbon anode for high power and high capacity Li-ion batteries[J]. Small, 2020, 16(7): 1907602.
doi: 10.1002/smll.v16.7 URL |
[13] |
Yao Y Z, Zhao X H, Razzaq A A, Gu Y T, Yuan X T, Shah R, Lian Y B, Lei J X, Mu Q Q, Ma Y, Peng Y, Deng Z, Liu Z F. Mosaic rGO layers on lithium metal anodes for the effective mediation of lithium plating and stripping[J]. J. Mater. Chem. A, 2019, 7(19): 12214-12224.
doi: 10.1039/C9TA03679B URL |
[14] |
Pathak R, Chen K, Gurung A, Reza K M, Bahrami B, Wu F, Chaudhary A, Ghimire N, Zhou B, Zhang W H, Zhou Y, Qiao Q Q. Ultrathin bilayer of graphite/SiO2 as solid interface for reviving Li metal anode[J]. Adv. Energy Mater., 2019, 9(36): 1901486.
doi: 10.1002/aenm.v9.36 URL |
[15] |
Zhang H, Li C M, Piszcz M, Coya E, Rojo T, Rodriguez-Martinez L M, Armand M, Zhou Z B. Single lithium-ion conducting solid polymer electrolytes: advances and perspectives[J]. Chem. Soc. Rev., 2017, 46(3): 797-815.
doi: 10.1039/C6CS00491A URL |
[16] | Yang J(杨娟), Lang J W(郎俊伟), Zhang P(张鹏), Liu B(刘宝). Preparations of nanostructural MnO-porous graphene hybrid material by thermally-driven etching of MnO for lithium-air batteries[J]. J. Electrochem.(电化学), 2019, 25(5): 621-630. |
[17] | Hu X L(胡晓兰), Zhou C(周川), Dai S W(代少伟), Liu W J(刘文军), Li W D(李伟东), Zhou Y J(周玉敬), Qiu H(邱虹), Bai H(白华). Micro-structures and dynamic thermal mechanical properties of graphene oxide modified carbon fiber/epoxy resin composites with different fiber surface properties[J]. Acta Mater. Compos. Sin.(复合材料学报), 2020, 37(5): 1070-1080. |
[18] |
Zhang Y F, Pan M Z, Liu X P, Li C C, Dong J M, Sun Y B, Zeng D L, Yang Z H, Cheng H S. Overcoming the ambient-temperature operation limitation in lithium-ion batteries by using a single-ion polymer electrolyte fabricated by controllable molecular design[J]. Energy Technol., 2018, 6(2): 289-295.
doi: 10.1002/ente.v6.2 URL |
[19] | Zhang J W, Wang S J, Han D M, Xiao M, Sun L Y, Meng Y Z. Lithium (4-styrenesulfonyl) (trifluoromethanesulfonyl) imide based single-ion polymer electrolyte with superior battery performance[J]. Energy Storage Mater., 2020, 24: 579-587. |
[20] |
Shin D M, Bachman J E, Taylor M K, Kamcev J, Park J G, Ziebel M E, Velasquez E, Jarenwattananon N N, Sethi G K, Cui Y, Long J R. A single-ion conducting borate network polymer as a viable quasi-solid electrolyte for lithium metal batteries[J]. Adv. Mater., 2020, 32: 1905771.
doi: 10.1002/adma.v32.10 URL |
[21] |
Liu J C, Pickett P D, Park B, Upadhyay S P, Orski S V, Schaefer J L. Non-solvating, side-chain polymer electrolytes as lithium single-ion conductors: synjournal and ion transport characterization[J]. Polym. Chem., 2020, 11(2): 461-471.
doi: 10.1039/C9PY01035A URL |
[22] |
Deng K R, Zeng Q G, Wang D, Liu Z, Qiu Z P, Zhang Y F, Xiao M, Meng Y Z. Single-ion conducting gel polymer electrolytes: design, preparation and application[J]. J. Mater. Chem. A, 2020, 8(4): 1557-1577.
doi: 10.1039/C9TA11178F URL |
[23] |
Zhang Y F, Cai W W, Rohan R, Pan M Z, Liu Y, Liu X P, Li C C, Sun Y B, Cheng H S. Toward ambient temperature operation with all-solid-state lithium metal batteries with a sp3 boron-based solid single ion conducting polymer electrolyte[J]. J. Power Sources, 2016, 306: 152-161.
doi: 10.1016/j.jpowsour.2015.12.010 URL |
[24] |
Zhang Y F, Rohan R, Cai W W, Xu G D, Sun Y B, Lin A, Cheng H S. Influence of chemical microstructure of single-ion polymeric electrolyte membranes on performance of lithium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2014, 6(20): 17534-17542.
doi: 10.1021/am503152m URL |
[25] |
Zhang Y F, Lim C A, Cai W W, Rohan R, Xu G D, Sun Y B, Cheng H S. Design and synjournal of a single ion conducting block copolymer electrolyte with multifunctionality for lithium ion batteries[J]. RSC Adv., 2014, 4(83): 43857-43864.
doi: 10.1039/C4RA08709G URL |
[26] |
Zhang Y F, Xu G D, Sun Y B, Han B, Teguh B W T, Chen Z X, Rohan R, Cheng H S. A class of sp3 boron-based single-ion polymeric electrolytes for lithium ion batteries[J]. RSC Adv., 2013, 3(35): 14934-14937.
doi: 10.1039/c3ra41167b URL |
[27] |
Wang J Y, He Y, Wu Q, Zhang Y F, Li Z Y, Liu Z H, Huo S K, Dong J M, Zeng D L, Cheng H S. A facile non-solvent induced phase separation process for preparation of highly porous polybenzimidazole separator for lithium metal battery application[J]. Sci. Rep., 2019, 9: 19320-19329.
doi: 10.1038/s41598-019-55865-6 URL |
[28] | Hu J(胡静), Huang B(黄碧斌), Jiang L P(蒋莉萍), Fang K H(冯凯辉), Li Q H(李琼慧), Xu Z(许钊). Application and major issues of electrochemical energy storage under the environment of power market[J]. Electric Power(中国电力), 2020, 53(1): 100-107. |
[29] |
Xu R, Xiao Y, Zhang R, Cheng X B, Zhao C Z, Zhang X Q, Yan C, Zhang Q, Huang J Q. Dual-phase single-ion pathway interfaces for robust lithium metal in working batteries[J]. Adv. Mater., 2019, 31(19): 1808392.
doi: 10.1002/adma.v31.19 URL |
[30] |
Liu Z H, Chai J C, Xu G J, Wang Q F, Cui G L. Functional lithium borate salts and their potential application in high performance lithium batteries[J]. Coord. Chem. Rev., 2015, 292: 56-73.
doi: 10.1016/j.ccr.2015.02.011 URL |
[31] |
Qin B S, Liu Z H, Zheng J, Hu P, Ding G L, Zhang C J, Zhao J H, Kong D S, Cui G L. Single-ion dominantly conducting polyborates towards high performance electrolytes in lithium batteries[J]. J. Mater. Chem. A, 2015, 3(15): 7773-7779.
doi: 10.1039/C5TA00216H URL |
[32] |
Qin B S, Liu Z H, Ding G L, Duan Y L, Zhang C J, Cui G L. A single-ion gel polymer electrolyte system for improving cycle performance of LiMn2O4 battery at elevated temperatures[J]. Electrochim. Acta, 2014, 141: 167-172.
doi: 10.1016/j.electacta.2014.07.004 URL |
[33] |
Zhang Y F, Chen Y Z, Liu Y, Qin B S, Yang Z H, Sun Y B, Zeng D L, Varzi A, Passerini S, Liu Z H, Cheng H S. Highly porous single-ion conductive composite polymer electrolyte for high performance Li-ion batteries[J]. J. Power Sources, 2018, 397: 79-86.
doi: 10.1016/j.jpowsour.2018.07.007 URL |
[34] |
Dong J M, Zhang Y F, Wang J Y, Yang Z H, Sun Y B, Zeng D L, Liu Z H, Cheng H S. Highly porous single ion conducting polymer electrolyte for advanced lithium-ion batteries via facile water-induced phase separation process[J]. J. Membr. Sci., 2018, 568: 22-29.
doi: 10.1016/j.memsci.2018.09.052 URL |
[35] |
Liu Y, Zhang Y F, Pan M Z, Liu X P, Li C C, Sun Y B, Zeng D L, Cheng H S. A mechanically robust porous single ion conducting electrolyte membrane fabricated via self-assembly[J]. J. Membr. Sci., 2016, 507: 99-106.
doi: 10.1016/j.memsci.2016.02.002 URL |
[36] |
Li C C, Qin B S, Zhang Y F, Varzi A, Passerini S, Wang J Y, Dong J M, Zeng D L, Liu Z H, Cheng H S. Single-ion conducting electrolyte based on electrospun nanofibers for high-performance lithium batteries[J]. Adv. Energy Mater., 2019, 9(10): 1970029.
doi: 10.1002/aenm.v9.10 URL |
[37] | Zan L N(昝丽娜). Comprehensive experimental design of preparation of multiwalled carbon nanotubes/polyvinyl alcohol composite fiber by electrospining[J]. Chin. J. Chem. Edu.(化学教育(中英文)), 2020, 29(41): 76-80. |
[38] |
Li H, Wu D B, Wu J, Dong L Y, Zhu Y J, Hu X L. Flexible, high-wettability and fire-resistant separators based on hydroxyapatite nanowires for advanced lithium-ion batteries[J]. Adv. Mater., 2017, 29(44): 1703548.
doi: 10.1002/adma.201703548 URL |
[1] | 张滟滟, 刘越, 陆一鸣, 于沛平, 杜文轩, 麻冰云, 谢淼, 杨昊, 程涛. 多尺度模拟研究溶质调控下电解液在锂金属电极上的分解机理[J]. 电化学(中英文), 2022, 28(4): 2105181-. |
[2] | 周莉, 吴勰, 薛照明. 热塑性聚氨酯基聚合物电解质的制备与表征[J]. 电化学(中英文), 2021, 27(4): 439-448. |
[3] | 侯旭, 何欣, 李劼. “Water-in-salt”聚合物电解质制备及其电化学性能研究[J]. 电化学(中英文), 2021, 27(2): 202-207. |
[4] | 张运丰, 董佳明, 谭畅, 霍士康, 王佳颖, 何阳, 王雅莹. Li-SGO掺杂半互穿网络型多孔单离子传导聚合物复合电解质的制备[J]. 电化学(中英文), 2021, 27(1): 108-117. |
[5] | 潘晓娜, 刘丽来, 王治璞, 王丹, 李云, 杨培霞, 张锦秋, 安茂忠. 离子液体凝胶聚合物电解质的三元组分相互作用研究[J]. 电化学(中英文), 2020, 26(3): 406-412. |
[6] | 户献雷, 梁晓旭, 章明秋, 张若昕, 张利萍, 阮文红. 不同锂盐对超支化/梳状复合型聚合物电解质的性能影响研究[J]. 电化学(中英文), 2016, 22(5): 535-541. |
[7] | 谭力盛, 潘婧, 李瑶, 庄林, 陆君涛. 碱性聚合物电解质燃料电池电极疏水性对性能的影响[J]. 电化学(中英文), 2013, 19(3): 199-203. |
[8] | 许开卿, 范乐庆, 吴季怀, 冷晴, 钟欣, 林建明, 黄妙良, 兰章. 聚乙烯醇基水凝胶聚合物电解质超级电容器的研究[J]. 电化学(中英文), 2011, 17(2): 190-194. |
[9] | 赵亮, 胡勇胜, 李泓, 王兆翔, 徐红星, 黄学杰, 陈立泉. 拉曼光谱在锂离子电池研究中的应用[J]. 电化学(中英文), 2011, 17(1): 12-23. |
[10] | 伍伟峰, 杨长春, 贺素姣, 张兵兵, 徐松, . MCM-48改性PVDF-HFP复合多孔型聚合物电解质[J]. 电化学(中英文), 2009, 15(3): 315-319. |
[11] | 孟祥利, 殷金玲, 任娟, 张宝宏, . PMMA基凝胶聚合物电解质双电层电容器的研究[J]. 电化学(中英文), 2007, 13(1): 101-105. |
[12] | 叶霖, 赵玉美, 张晓雯, 冯增国, 白莹, 吴锋, . 纳米SiO_2复合的梳状聚醚聚合物电解质的导电性能研究[J]. 电化学(中英文), 2007, 13(1): 19-24. |
[13] | 袁安保;赵俊;. PVA-CMC-KOH-H_2O碱性聚合物电解质研究[J]. 电化学(中英文), 2006, 12(1): 40-45. |
[14] | 叶霖;高鹏;冯增国;吴锋;陈实;王国庆;. 梳形聚醚全固态聚合物电解质的电导率研究[J]. 电化学(中英文), 2006, 12(1): 29-34. |
[15] | 陈作锋,姜艳霞,庄全超,董全峰,孙世刚. MCM-41介孔分子筛掺杂的微孔型聚合物电解质的制备与表征[J]. 电化学(中英文), 2005, 11(2): 162-166. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||