[1] |
Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.
doi: 10.1038/35104644
URL
|
[2] |
Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657.
doi: 10.1038/451652a
URL
|
[3] |
Xu W, Wang J L, Ding F, Chen X L, Nasybutin E, Zhang Y H, Zhang J G. Lithium metal anodes for rechargeable batteries[J]. Energy Environ. Sci., 2014, 7(2): 513-537.
doi: 10.1039/C3EE40795K
URL
|
[4] |
Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chem. Mater., 2010, 22(3): 587-603.
doi: 10.1021/cm901452z
URL
|
[5] |
Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935.
doi: 10.1126/science.1212741
URL
|
[6] |
Wang G L, Liu J C, Tang S, Li H Y, Cao D X. Cobalt oxide-graphene nanocomposite as anode materials for lithium-ion batteries[J]. J. Solid State Electrochem., 2011, 15(11-12): 2587-2592.
doi: 10.1007/s10008-010-1254-y
URL
|
[7] |
Tikekar M D, Choudhury S, Tu Z Y, Archer L A. Design principles for electrolytes and interfaces for stable lithium-metal batteries[J]. Nat. Energy, 2016, 1: 16114.
doi: 10.1038/nenergy.2016.114
URL
|
[8] |
Zhang X Q(张学强), Cheng X B(程新兵), Zhang Q(张强). Advances in interfaces between Li metal anode and electrolyte[J]. Adv. Mater. Inter., 2018, 5(2): 1701097.
doi: 10.1002/admi.201701097
URL
|
[9] |
Zhou D, Liu R L, He Y B, Li F Y, Liu M, Li B H, Yang Q H, Cai Q, Kang F Y. SiO2 hollow nanosphere-based composite solid electrolyte for lithium metal batteries to suppress lithium dendrite growth and enhance cycle life[J]. Adv. Energy Mater., 2016, 6(7): 1502214.
doi: 10.1002/aenm.201502214
URL
|
[10] |
Guo Y P, Li H Q, Zhai T Y. Reviving lithium-metal anodes for next-generation high-energy batteries[D]. Adv. Mater., 2017, 29(29): 1700007.
|
[11] |
Wood K N, Kazyak E, Chadwick A F, Chen K H, Zhang J G, Thornton K, Dasgupta N P. Dendrites and pits: Untangling the complex behavior of lithium metal anodes through operando video microscopy[J]. ACS Cent. Sci., 2016, 2(11): 790-801.
doi: 10.1021/acscentsci.6b00260
URL
|
[12] |
Zhang S S. Problem, status, and possible solutions for lithium metal anode of rechargeable batteries[J]. ACS Appl. Energy Mater., 2018, 1(3): 910-920.
doi: 10.1021/acsaem.8b00055
URL
|
[13] |
Cheng X B, Zhang R, Zhao C Z, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: a review[J]. Chem. Rev., 2017, 117(15): 10403-10473.
doi: 10.1021/acs.chemrev.7b00115
URL
|
[14] |
Zheng G Y, Lee S W, Liang Z, Lee H W, Yan K, Yao H B, Wang H T, Li W Y, Chu S, Cui Y. Interconnected hollow carbon nanospheres for stable lithium metal anodes[J]. Nat. Nanotechnol., 2014, 9(8): 618-623.
doi: 10.1038/nnano.2014.152
URL
|
[15] |
Chen L, Connell J G, Nie A M, Huang Z N, Zavadil K R, Klavetter K C, Yuan Y F, Sharifi-Asl S, Shahbazian-Yassar R, Libera J A, Mane A U, Elam J W. Lithium metal protected by atomic layer deposition metal oxide for high performance anodes[J]. Mater. Chem. A, 2017, 5(24): 12297-12309.
doi: 10.1039/C7TA03116E
URL
|
[16] |
Zhu B, Jin Y, Hu X Z, Zheng Q H, Zhang S, Wang Q J, Zhu J. Poly(dimethylsiloxane) Thin film as a stable interfacial layer for high-performance lithium-metal battery anodes[J]. Adv. Mater., 2017, 29(2): 1603755.
doi: 10.1002/adma.v29.2
URL
|
[17] |
Song J, Lee H, Choo M J, Park J K, Kim H T. Ionomer liquid electrolyte hybrid ionic conductor for high cycling stability of lithium metal electrodes[J]. Sci. Rep., 2015, 5: 14458.
doi: 10.1038/srep14458
URL
|
[18] |
Liu Y Y, Lin D C, Yuen P Y, Liu K, Xie J, Dauskardt R H, Cui Y. An artificial solid electrolyte interphase with high li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes[J]. Adv. Mater., 2017, 29(10): 1605531.
doi: 10.1002/adma.v29.10
URL
|
[19] |
Liu W, Li W, Zhuo D, Zheng G Y, Lu Z D, Liu K, Cui Y. Core-shell nanoparticle coating as an interfacial layer for dendrite free lithium metal anodes[J]. ACS Cent. Sci., 2017, 3(2): 135-140.
doi: 10.1021/acscentsci.6b00389
URL
|
[20] |
Ma Y L, Zhou Z Z, Li C J, Wang L, Wang Y, Cheng X Q, Zuo P J, Du C Y, Huo H, Gao Y Z, Yin G P. Enabling reliable lithium metal batteries by a bifunctional anionic electrolyte additive[J]. Energy Storage Mater., 2018, 11: 197-204.
|
[21] |
Ouyang Y, Guo Y P, Li D, Wei Y Q, Zhai T Y, Li H Q. Single additive with dual functional-ions for stabilizing lithium anodes[J]. ACS Appl. Mater. Inter., 2019, 11(12): 11360-11368.
doi: 10.1021/acsami.8b21420
URL
|
[22] |
Yan C, Yao Y X, Chen X, Cheng X B, Zhang X Q, Huang J Q, Zhang Q. Solvation chemistry of lithium nitrate in carbonate electrolyte for high voltage lithium metal battery[J]. Angew. Chem. Int. Ed., 2018, 130(43): 14055-14059.
|
[23] |
Guo J, Wen Z Y, Wu M F, Jin J, Liu Y. Vinylene carbonate-LiNO3: A hybrid additive in carbonic ester electrolytes for SEI modification on Li metal anode[J]. Electrochem. Commun., 2015, 51: 59-63.
doi: 10.1016/j.elecom.2014.12.008
URL
|
[24] |
Yuan Y X, Wu F, Chen G H, Bai Y, Wu C. Porous LiF layer fabricated by a facile chemical method toward dendrite-free lithium metal anode[J]. J. Energy Chem., 2019, 37: 197-203.
doi: 10.1016/j.jechem.2019.03.014
URL
|
[25] |
Jing P C, Lu H M, Yang W W, Cao Y, Xu B B, Cai W, Deng Y. Polyaniline-coated VS4@rGO nanocomposite as high-performance cathode material for magnesium batteries based on Mg2+/Li+ dual ion electrolytes[J]. Ionics, 2020, 26(2): 777-787.
doi: 10.1007/s11581-019-03239-3
URL
|