电化学(中英文) ›› 2021, Vol. 27 ›› Issue (3): 316-331. doi: 10.13208/j.electrochem.201119
王赵云, 金磊, 杨家强, 李威青, 詹东平, 杨防祖*(), 孙世刚*()
收稿日期:
2020-11-30
修回日期:
2021-02-23
出版日期:
2021-06-28
发布日期:
2021-03-02
通讯作者:
杨防祖,孙世刚
E-mail:fzyang@xmu.edu.cn;sgsun@xmu.edu.cn
基金资助:
Zhao-Yun Wang, Lei Jin, Jia-Qiang Yang, Wei-Qing Li, Dong-Ping Zhan, Fang-Zu Yang*(), Shi-Gang Sun*()
Received:
2020-11-30
Revised:
2021-02-23
Published:
2021-06-28
Online:
2021-03-02
Contact:
Fang-Zu Yang,Shi-Gang Sun
E-mail:fzyang@xmu.edu.cn;sgsun@xmu.edu.cn
摘要:
孔金属化互连是印制电路板(PCB)高密度集成的核心制程之一,化学镀铜和电子电镀铜是实现孔金属化的关键技术。本文介绍HDI-PCB的概念和制作流程;综述化学镀铜和电子电镀铜孔金属化互连的研究和进展,包括溶液组成和操作条件的影响,添加剂及其相互作用机理,以及盲孔填充和通孔孔壁加厚机制;展望高密度互连印制电路板电子电镀基础研究及新技术发展方向。
王赵云, 金磊, 杨家强, 李威青, 詹东平, 杨防祖, 孙世刚. 高密度互连印制电路板孔金属化研究和进展[J]. 电化学(中英文), 2021, 27(3): 316-331.
Zhao-Yun Wang, Lei Jin, Jia-Qiang Yang, Wei-Qing Li, Dong-Ping Zhan, Fang-Zu Yang, Shi-Gang Sun. Studies and Progresses on Hole Metallization in High-Density Interconnected Printed Circuit Boards[J]. Journal of Electrochemistry, 2021, 27(3): 316-331.
表1
HDI-PCB在各领域的典型应用[12]
Application | Electronic product |
---|---|
Communication | 5G, smartphone |
Computer | Tablet computer, supercomputer |
Automobile | Navigator, Millimeter-wave radar |
Apparatus | Infrared spectrometer, muclear magnetic resonance analyzer |
Aerospace industry | Satellite, missile, black box |
Armarium | Electroencephalograph, microelectrode monitor |
Industrial control system | Sensor, printer, unified remote |
表2
不同化学镀铜体系的优缺点
Electroless copper system | Advantage | Disadvantage |
---|---|---|
Formaldehyde | Technology maturity, good coating quality | Environmental pollution, toxic, strong alkaine |
Glyoxylate | Fast deposition rate, nontoxic | Instability, high cost, active corrosion |
Hypophosphite | Low cost, safe, weak alkaline | Requring catalytic active metal ions, high resistivity of copper layer |
Protosalt | Eco-friendly, low pH, avoiding hydrogen gas evolution | Instability, low deposition rate |
表3
两种不同酸性硫酸盐电子电镀铜体系
Bath composition | Bath 1 | Bath 2 |
---|---|---|
CuSO4·5H2O | 220 g·L-1 | 75 g·L-1 |
H2SO4 | 60 g·L-1 | 180 g·L-1 |
Cl- | 60 mg·L-1 | 60 mg·L-1 |
Suppressor(PEG) | 200 mg·L-1 | 200 ~ 500 mg·L-1 |
Accelerator(SPS) | 1 mg·L-1 | 1 mg·L-1 |
Leveler(JGB) | 0.5 ~ 3 mg·L-1 | 2 mg·L-1 |
Current density | 2 A·dm-2 | 1.5 ~ 2 A·dm-2 |
Temperature | 25 oC | 28 oC |
Agitation | Air | Air |
[1] |
Jones T D A, Bernassau A, Flynn D, Price D, Beadel M, Desmulliez M P Y. Copper electroplating of PCB interconnects using megasonic acoustic streaming[J]. Ultrason. Sonochem., 2018, 42: 434-444.
doi: 10.1016/j.ultsonch.2017.12.004 URL |
[2] | Shen P H (沈品华). Electroplating manual[M]. Beijing: China Machine Press, 2011: 1-24. |
[3] | Zhang J (张佳). Application research on plating throwing power for printed circuit boards base on minitab software[D]. Chengdu: University of Electronic Science and Technology(电子科技大学), 2014. |
[4] |
Takagi K, Honma H, Sasabe, T. Development of sequential build-up multilayer printed wiring boards in Japan[J]. IEEE Electr. Insul. Mag., 2003, 19(5): 27-56.
doi: 10.1109/MEI.2003.1238715 URL |
[5] |
Blackshear E. D, Cases M, Klink E, Engle S R, Malfatt R S, Araujo D N D, Oggioni S, Lacroix L D, Wakil J A, Hougham G G. The evolution of build-up package technology and its design challenges[J]. IBM J. Res. Dev., 2005, 49(4): 641-661.
doi: 10.1147/rd.494.0641 URL |
[6] | Long F M (龙发明). Study on technique of blind/buried via in HDI rigid-flex PCB[D]. Chengdu: University of Electronic Science and Technology(电子科技大学), 2011. |
[7] | Ji L X (冀林仙). Investiagtion of copper electrodeposition for printed-circuit interconnection based on multiphysics coupling method[D]. Chengdu: University of Electronic Science and Technology(电子科技大学), 2016. |
[8] | Tian M B (田民波), Lin J D (林金堵), Zhu D T (祝大同). Substrates for high density package[M]. Beijing: Tsinghua University Press, 2003: 665-680. |
[9] | Tian M B (田民波), Lin J D (林金堵), Zhu D T (祝大同). Substrates for high density package[M]. Beijing: Tsinghua University Press, 2003: 629. |
[10] | Tian M B (田民波), Lin J D (林金堵), Zhu D T (祝大同). Substrates for high density package[M]. Beijing: Tsinghua University Press, 2003: 18-21. |
[11] | Huang Y X (黄雨新). Key technology and application of laser formed blind via in HDI printed circuit board[D]. Chengdu: University of Electronic Science and Technology(电子科技大学), 2013. |
[12] | He J (何杰). Key technology and application of making plug holes and HDI printed circuit board[D]. Chengdu: University of Electronic Science and Technology(电子科技大学), 2014. |
[13] | Zhang Z (张正), Li X Q (李孝琼), Gao S (高四), Su L F (苏良飞). Comparison of electroless thick copper plating, organic conductive films and black hole[J]. Printed Circuit Info.(印制电路信息), 2015, 23(4): 23-25. |
[14] | Fang J L (方景礼), Chen W Y (陈伟元). Isothermal curing kinetics of epoxy resin and its application in copper clad laminate[J]. Printed Circuit Info.(印制电路信息), 2019, 27(4): 33-39. |
[15] |
Li J J, Zhou G Y, Jin X F, Hong Y, He W, Wang S X, Chen Y M, Yang W J, Su X H. Direct activation of copper electroplating on conductive composite of polythiophene surface-coated with nickel nanoparticles[J]. Compos. Pt. B - Eng., 2018, 154: 257-262.
doi: 10.1016/j.compositesb.2018.08.019 URL |
[16] | Yu F B (余凤斌), Feng L M (冯立明), Xia X H (夏祥华), Geng Q J (耿秋菊). Study on hole metallization of flexible printed circuit board[J]. Electroplating Finishing(电镀与涂饰), 2009, 28(1): 30-32. |
[17] | Yang F Z (杨防祖), Wu W G (吴伟刚), Tian Z Q (田中群), Zhou S M (周绍民). Technology improvement for porous metallization of printed circuit board[J]. Plating and Finishing(电镀与精饰), 2012, 34(8): 30-33. |
[18] | Huang S M, Liu C W, Dow W P. Effect of convection-dependent adsorption of additives on microvia filling in an acidic copper plating solution[J]. J. Electrochem. Soc., 2012, 159(3): 135-141. |
[19] | Shen P H (沈品华). Electroplating manual[M]. Beijing: China Machine Press, 2011: 1-25. |
[20] | Wang X W (王秀文), Jang H Y (姜洪艳), Liu Z J (刘志鹃), Wang Z (王增林). A study on potassium permanga-nate solution roughening epoxy resin boards[J]. Plating & Finishing(电镀与精饰), 2006, 28(6): 9-13. |
[21] | Zhang D L (张道礼), Gong S P (龚树萍), Zhou D X (周东祥). Speciation in electroless copper solutions and roles of complexing agents[J]. Mater. Prot.(材料保护), 200, 33(4): 3-4. |
[22] | Shen P H (沈品华). Electroplating manual[M]. Beijing: China Machine Press, 2011: 2-6. |
[23] |
Takashi K, Isamu M, Hideomi T, Hideo H. Adhesion between flat copper surfaces and epoxy insulation resin without roughening[J]. Journal of the Surface Finishing Society of Japan, 1999, 50(1): 101-102.
doi: 10.4139/sfj.50.101 URL |
[24] |
Seo J W, Nam H S, Lee S, Won Y S. Prevention of blister formation in electrolessly deposited copper film on organic substrates[J]. Korean J. Chem. Eng., 2012, 29(4): 529-533.
doi: 10.1007/s11814-011-0208-0 URL |
[25] | Shipley C R, Shipley L H, Gulla M, Dutkewych O B. Electroless copper plating: United States, US3615733[P], 1971-10-26. |
[26] |
Simon B, Laura K P, Bruce M, Alaaedeen A, Frank B, Ralf B. The effect of nickel on the strain evolution in chemical copper films[J]. Thin Solid Films, 2012, 520(23): 6935-6941.
doi: 10.1016/j.tsf.2012.07.039 URL |
[27] | Li L S, Li X R, Zhao W X, Ma Q, Lu X B, Wang Z L. A study of low temperature and low stress electroless copper plating bath[J]. Int. J. Electrochem. Sci., 2013, 8(4): 5191-5202. |
[28] | Shen D D (申丹丹), Yang F Z (杨防祖), Wu H H (吴辉煌). Effect of 2,2′-dipyridyl and K4Fe(CN)6 on electroless copper plating using glyoxylic acid as reducing agent [J]. J. Electrochem.(电化学), 2007, 13(1): 67-71. |
[29] | Yosi S D. Electroless Copper deposition using glyoxylic acid as reducing agent for ultralarge scale integration metallization[J]. Cheminform., 2010, 31(6): 279-282. |
[30] |
Kim Y S, Kim H I, Cho J H, Seo H K, Dar M A, Shin H S, Ten E G A, Lu T M, Senkevich J J. Electroless copper on refractory and noble metal substrates with an ultra-thin plasma-assisted atomic layer deposited palladium layer[J]. Electrochim. Acta, 2006, 51(12): 2400-2406.
doi: 10.1016/j.electacta.2005.07.018 URL |
[31] |
Honma H, Kobayashi T. Electroless copper deposition process using glyoxylic acid as a reducing agent[J]. J. Electrochem. Soc., 1994, 141(3): 730-733.
doi: 10.1149/1.2054800 URL |
[32] | Yang F Z (杨防祖), Yao G H (姚光华), Zhou S M (周绍民). An electroless copper plating process using glyoxylate as reductant[J]. Plating & Finishing(电镀与精饰), 2012, 34(3): 1-5. |
[33] | Wu L Q (吴丽琼), Yang F Z (杨防祖), Huang L (黄令), Sun S G (孙世刚), Zhou S M (周绍民). An electrochemical study of electoless copper plating using Glyoxylic acid as reducing agent[J]. J. Electrochem.(电化学), 2005, 11(4): 402-406. |
[34] | Gao Y L (高彦磊), Bai H J (白红军), Yin L (殷列), Liu Z H (刘宗怀), Yang Z P (杨祖培), Wang Z L (王增林). Latest progress of electroless copper deposition[J]. Electroplating Finishing(电镀与涂饰), 2008, 27(5): 22-25. |
[35] | Kukanskis P E, Grunwald J J, Ferrier D R, Sawoska D A. Electroless copper composition solution using a hypophosphite reducing agent: United States, US4209331[P]. 1980-06-24. |
[36] |
Hung A, Chen K M. Mechanism of hypophosphite-reduced electroless copper plating[J]. J. Electrochem Soc, 1989, 136(1): 72-75.
doi: 10.1149/1.2096617 URL |
[37] | Li J, Kohl P A. The acceleration of nonformaldehyde electroless copper plating[J]. J. Electrochem. Soc., 2002, 149(12): 631-636. |
[38] |
Li J, Hayden H, Kohl P A. The influence of 2,2-dipyridyl on non-formaldehyde electroless copper plating[J]. Electrochim. Acta, 2004, 49(11): 1789-1795.
doi: 10.1016/j.electacta.2003.12.010 URL |
[39] |
Gan X P, Wu Y T, Liu Lei, Hu W B. Effects of K4Fe(CN)6 on electroless copper plating using hypophosphite as reducing agent[J]. J. Appl. Electrochem., 2007, 37(8): 899-904.
doi: 10.1007/s10800-007-9327-z URL |
[40] | Yang F Z (杨防祖), Yang B (杨斌), Huang L (黄令), Xu S K (许书楷), Yao G H (姚光华), Zhou S M (周绍民). Comparison between the electroless copper plating process using sodium hypophosphite and formaldehyde as reductants[J]. Plating & Finishing(电镀与精饰), 2008, 30(8): 12-15. |
[41] |
Sone M, Kobayakawa K, Saitou M, Sato Y. Electroless copper plating using FeII as a reducing agent[J]. Electrochim. Acta, 2004, 49(2): 233-238.
doi: 10.1016/j.electacta.2003.07.004 URL |
[42] | Shen P H (沈品华). Electroplating manual[M]. Beijing: China Machine Press, 2011: 1-30. |
[43] |
Reid J. Copper electrodeposition: principles and recent progress[J]. Jpn. J. Appl. Phys., 2001, 40(4B): 2650-2657.
doi: 10.1143/JJAP.40.2650 URL |
[44] | Shen P H (沈品华). Electroplating manual[M]. Beijing: China Machine Press, 2011: 1-33. |
[45] | Shen P H (沈品华). Electroplating manual[M]. Beijing: China Machine Press, 2011: 1-12. |
[46] | Wang S N (王劭南), Wang Z L (王增林). Effect of different additives on the uniform deposition of through-hole by pulse electroplating in acidic copper plating bath[J]. Plating & Finishing(电镀与精饰), 2008, 30(12): 24-28. |
[47] |
Wang Z X, Wang S, Yang Z, Wang Z L. Influence of additives and pulse parameters on uniformity of through-hole copper plating[J]. Trans. Inst. Metal Finish., 2013, 88(5): 272-276.
doi: 10.1179/002029610X12791981507884 URL |
[48] | Shao W, Pattanaik G, Zangari G. Influence of chloride anions on the mechanism of copper electrodeposition from acidic sulfate electrolytes[J]. J. Electrochem. Soc., 2007, 154(4): 201-207. |
[49] | Shen P H (沈品华). Electroplating manual[M]. Beijing: China Machine Press, 2011: 1-5. |
[50] |
Schmidt R, Gaida J. Cuprous ion mass transport limitations during copper electrodeposition[J]. ChemElectroChem, 2017, 4(8): 1849-1851.
doi: 10.1002/celc.v4.8 URL |
[51] |
Dow W P, Huang H S. Roles of chloride ion in microvia filling by copper electrodeposition[J]. J. Electrochem. Soc., 2005, 152(2): C67-C76.
doi: 10.1149/1.1849934 URL |
[52] |
Nagy Z, Blaudeau J P, Hung N C, Curtiss L A, Zurawski D J. Chloride-ion catalysis of copper deposition reaction[J]. J. Electrochem. Soc., 1995, 142(6): L87-L89.
doi: 10.1149/1.2044254 URL |
[53] |
Soares D M, Wasle S, Weil K G, Doblhofer K. Copper ion reduction catalyzed by chloride ions[J]. J. Electroanal. Chem., 2002, 532(1-2): 353-358.
doi: 10.1016/S0022-0728(02)01050-1 URL |
[54] | Keller H, Saracino M, Nguyen H, Broekmann P. Templating the near-surface liquid electrolyte: In situ surface X-ray diffraction study on anion/cation interactions at electrified interfaces[J]. Phys. Rev. B, 2010, 82(24): 1771-1782. |
[55] |
Brown G M, Hope G A. A SERS study of SO2-/C1- ion adsorption at a copper electrodein-situ[J]. J. Electroanal. Chem., 1996, 405(1-2): 211-216.
doi: 10.1016/0022-0728(95)04400-0 URL |
[56] | Peng J (彭佳), Cheng J (程骄), Wang C (王翀), Xiao D J (肖定军), He W (何为). Research progress of the interactions among the additives of copper electroplating in PCB manufacturing[J]. Plating & Finishing(电镀与精饰), 2016, 38(12): 15-22. |
[57] | Shen P H (沈品华). Electroplating manual[M]. Beijing: China Machine Press, 2011: 1-7. |
[58] |
Dow W P, Huang H S, Yen M Y, Chen H H. Roles of chloride ion in microvia filling by copper electrodeposition[J]. J. Electrochem. Soc., 2005, 152(2): C77-C88.
doi: 10.1149/1.1849935 URL |
[59] | Tan M, Guymon C, Wheeler D, Harb J N. The role of SPS, MPSA, and chloride in additive systems for copper electrodeposition[J]. J. Electrochem. Soc., 2007, 154(2): 78-81. |
[60] | Dow W P, Chiu Y D, Yen M Y. Microvia filling by Cu electroplating over a Au seed layer modified by a disulfide[J]. J. Electrochem. Soc., 2009, 156(4): 155-167. |
[61] | Tu H L, Yen P Y, Wu H L, Chen S, Vogel W, Yau S L, Dow W P. In situ STM of 3-mercaptopropanesulfonate adsorbed on Pt(111) electrode and its effect on the electrodeposition of copper[J]. J. Electrochem. Soc., 2010, 157(4): 206-210. |
[62] |
Hai N T M, Huynh T, Fluegel A, Arnold M, Mayer D, Reckien W, Bredow T, Broekmann P. Competitive anion/anion interactions on copper surfaces relevant for Damascene electroplating[J]. Electrochim. Acta, 2012, 70: 286-295.
doi: 10.1016/j.electacta.2012.03.054 URL |
[63] |
Hai N T M, Furrer J, Gjuroski I, Bircher M P, Cascella M, Broekmann P. On the acceleration of Cu electrodeposition by TBPS (3,3-thiobis-1-propanesulfonic acid): A combined electrochemical, STM, NMR, ESI-MS and DFT study[J]. J. Electrochem. Soc., 2013, 160(12): D3158-D3164.
doi: 10.1149/2.030312jes URL |
[64] | Xiao N (肖宁). Study on microvia filling performances and action mechanisms of EPE inhibitors in copper electroplating process[D]. Harbin: Harbin Institute of Technology(哈尔滨工业大学), 2013. |
[65] |
Yin L, Liu Z H, Yang Z P, Wang Z L, Shingubara S. Effect of PEG molecular weight on bottom-up filling of copper electrodeposition for PCB interconnects[J]. Trans. Inst. Metal Finish., 2010, 88(3): 149-153.
doi: 10.1179/174591910X12692711390390 URL |
[66] | Gallaway J, Willey M, West A. Copper filling of 100 nm trenches using PEG, PPG, and a triblock copolymer as plating suppressors[J]. J. Electrochem. Soc., 2009, 156(8): 287-295. |
[67] | Willey M, Mclnerney E. Adsorption and desorption kinetics of a block copolymer wetting agent used in copper electroplating[J]. J. Electrochem. Soc., 2009, 156(3): 98-103. |
[68] |
Ren S, Lei Z, Wang Z. Investigation of suppressor polyethylene glycol dodecyl ether on electroplated Cu filling by electrochemical method[J]. Trans. Inst. Metal Finish., 2015, 93(4): 190-195.
doi: 10.1179/0020296715Z.000000000251 URL |
[69] |
Lu X B, Yao L J, Ren S J, Wang Z L. A study of bottom-up electroplated copper filling by the potential difference between two rotating speeds of a working electrode[J]. J. Electroanal. Chem., 2014, 712: 25-32.
doi: 10.1016/j.jelechem.2013.07.016 URL |
[70] |
Kelly J J, West A C. Copper deposition in the presence of polyethylene glycol I. Quartz crystal microbalance study[J]. J. Electrochem. Soc., 1998, 145(10): 3472-3476.
doi: 10.1149/1.1838829 URL |
[71] |
Feng Z V, Li X, Gewirth A A. Inhibition due to the interaction of polyethylene glycol, chloride, and copper in plating baths: A surface-enhanced Raman study[J]. J. Phys. Chem. B, 2003, 107(35): 9415-9423.
doi: 10.1021/jp034875m URL |
[72] |
Bozzini B, Mele C, D’Urzo L, Romanello V. An electrochemical and in situ SERS study of Cu electrodeposition from acidic sulphate solutions in the presence of 3-diethylamino-7-(4-dimethylaminophenylazo)-5-phenylphen-azi-nium chloride (Janus Green B)[J]. J. Appl. Electrochem., 2006, 36(9): 973-981.
doi: 10.1007/s10800-006-9124-0 URL |
[73] |
Lai Z Q, Wang S X, Wang C, Hong Y, Zhou G Y, Chen Y M, He W, Peng Y Q, Xiao D J. A comparison of typical additives for copper electroplating based on theoretical computation[J]. Comput. Mater. Sci., 2018, 147: 95-102.
doi: 10.1016/j.commatsci.2017.11.049 URL |
[74] | Li Y B, Wang W, Li Y L. Adsorption behavior and related mechanism of Janus Green B during copper Via-Filling process[J]. J. Electrochem. Soc., 2009, 156(4): 119-124. |
[75] | Dow W P, Huang H S, Yen M Y, Huang H C. Influence of convection-dependent adsorption of additives on microvia filling by copper electroplating[J]. J. Electrochem. Soc., 2005, 152(6): 425-434. |
[76] |
Lai Z Q, Wang S X, Wang C, Hong Y, Chen Y M, Zhang H W, Zhou G Y, He W, Ai K, Peng Y Q. Computational analysis and experimental evidence of two typical levelers for acid copper electroplating[J]. Electrochim. Acta, 2018, 273: 318-326.
doi: 10.1016/j.electacta.2018.04.062 URL |
[77] |
Lei Z W, Chen L, Wang W L, Wang Z L, Zhao C. Tetrazole derived levelers for filling electroplated Cu microvias: electrochemical behaviors and quantum calculations[J]. Electrochim. Acta, 2015, 178: 546-554.
doi: 10.1016/j.electacta.2015.08.037 URL |
[78] |
Chang C, Lu X B, Lei Z W, Wang Z L, Zhao C. 2-Mercaptopyridine as a new leveler for bottom-up filling of micro-vias in copper electroplating[J]. Electrochim. Acta, 2016, 208: 33-38.
doi: 10.1016/j.electacta.2016.04.177 URL |
[79] |
Wang X, Zhang S T, Chen S J, Tan B C, Guo H L, Wang Y, Qiang Y J, Fu S L, Wen Y N. Effects of 2,2-Dithiodi-pyridine as a leveler for through-holes filling by copper electroplating[J]. J. Electrochem. Soc., 2019, 166(13): D660-D668.
doi: 10.1149/2.0461913jes |
[80] |
Ren S J, Lei Z W, Wang Z L. Investigation of nitrogen heterocyclic compounds as levelers for electroplating Cu filling by electrochemical method and quantum chemical calculation[J]. J. Electrochem. Soc., 2015, 162(10): D509-D514.
doi: 10.1149/2.0281510jes URL |
[81] |
Zheng L, He W, Zhu K, Wang C, Wang S X, Hong Y, Chen Y M, Zhou G Y, Miao H, Zhou J Q. Investigation of poly(1-vinyl imidazole co 1, 4-butanediol diglycidyl ether) as a leveler for copper electroplating of through-hole[J]. Electrochim. Acta, 2018, 283: 560-567.
doi: 10.1016/j.electacta.2018.06.132 URL |
[82] |
Lv J G, Zhao X H, Jie X, Li J, Wei X C, Chen B, Hong G, Wu W J, Wang L M. Fatty acid quaternary ammonium surfactants based on renewable resources as a leveler for copper electroplating[J]. Chemelectrochem, 2019, 6(13): 3254-3263.
doi: 10.1002/celc.v6.13 URL |
[83] |
Li J, Zhou G Y, Hong Y, Wang C, He W, Wang S X, Chen Y M, Wen Z S, Wang Q Y. Copolymer of pyrrole and 1,4-butanediol diglycidyl as an efficient additive leveler for through-hole copper electroplating[J]. ACS Omega, 2020, 5(10): 4868-4874.
doi: 10.1021/acsomega.9b03691 URL |
[84] |
Wang X M, Wang K, Xu J, Li J, Lv J G, Zhao M, Wang L M. Quinacridone skeleton as a promising efficient leveler for smooth and conformal copper electrodeposition[J]. Dyes Pigment., 2020, 181(10): 108594.
doi: 10.1016/j.dyepig.2020.108594 URL |
[85] |
Chen B, Wang A Y, Wu S Y, Wang L M. Polyquaternium-2: A new levelling agent for copper electroplating from acidic sulphate bath[J]. Electrochemistry, 2016, 84(6): 414-419.
doi: 10.5796/electrochemistry.84.414 URL |
[86] |
Hai N T M, Kramer K W, Fluegel A, Arnold M, Mayer D, Broekmann P. Beyond interfacial anion/cation pairing: The role of Cu(I) coordination chemistry in additive-controlled copper plating[J]. Electrochim. Acta, 2012, 83: 367-375.
doi: 10.1016/j.electacta.2012.07.036 URL |
[87] |
Andricacos P C, Uzoh C, Dukovic J O, Horkans J, Deligianni H. Damascene copper electroplating for chip interconnections[J]. IBM J. Res. Dev., 1998, 42(5): 567-574.
doi: 10.1147/rd.425.0567 URL |
[88] |
West A C, Mayer S, Reid J. A superfilling model that predicts bump formation[J]. Electrochem. Solid State Lett., 2001, 4(7): C50-C53.
doi: 10.1149/1.1375856 URL |
[89] |
Moffat T P, Wheeler D, Kim S K, Josell D. Curvature enhanced adsorbate coverage mechanism for bottom-up superfilling and bump control in damascene processing[J]. Electrochim. Acta, 2007, 53(1): 145-154.
doi: 10.1016/j.electacta.2007.03.025 URL |
[90] | Akolkar R, Landau U. Mechanistic analysis of the “bottom-up” fill in copper interconnect metallization[J]. J. Ele-ctrochem. Soc., 2009, 156(9): D351-D358. |
[91] | Dow W P (窦维平). Applications of microvia and through-hole filling by copper electroplating[J]. J.Fudan Univ.(Nat. Sci.), 2012, 51(2): 131-138. |
[92] |
Dow W P, Yen M Y, Liao S Z, Chiu Y D, Huang H C. Filling mechanism in microvia metallization by copper electroplating[J]. Electrochim. Acta, 2008, 53(28): 8228-8237.
doi: 10.1016/j.electacta.2008.06.042 URL |
[93] |
Ji L X, Wang S X, Wang C, Chen G Q, Chen Y M, He W, Tan Z. Improved uniformity of conformal through-hole copper electrodeposition by revision of plating cell configuration[J]. J. Electrochem. Soc., 2015, 162(12): D575-D583.
doi: 10.1149/2.0761512jes URL |
[94] |
Xiang J, Wang S X, Li J, He W, Wang C, Chen Y M, Zhang H W, Miao H, Zhou J Q, Jin X F. Electrochemical factors of levelers on plating uniformity of through-holes: Simulation and Experiments[J]. J. Electrochem. Soc., 2018, 165(9): E359-D365.
doi: 10.1149/2.0331809jes URL |
[95] |
Xiang J, Wang C, Chen Y M, Xia F, He W, Mao H, Zhou J Q, Chen Q G, Jin X F. Numerical simulation and experiments to improve throwing power for practical PCB through-holes plating[J]. Circuit World, 2019, 45(4): 221-230.
doi: 10.1108/CW-05-2018-0033 |
[96] | Yang F Z (杨防祖), Wu W G (吴伟刚), Jiang Y F (蒋义峰), Tian Z Q (田中群), Yao S B (姚士冰), Xu S K (许书楷), Chen B Y (陈秉彝), Zhou S M (周绍民). Alkaline cyanogen-free copper plating liquid for steel substrate and preparation method: China, CN101665962A[P]. 2010-03-10. |
[97] | Yang F Z (杨防祖), Jiang Y F (吴伟刚), Wu D Y (吴德印), Tian Z Q (田中群), Zhou S M (周绍民). Alkaline cyanide-free copper-plated anode dissolving accelerator: China, CN103014789A[P]. 2013-04-03. |
[98] | Yang F Z (杨防祖), Wu W G (吴伟刚), Lin Z P (林志萍), Huang L (黄令), Zhou S M (周绍民). Non-cyanide copper plating on steel substrate in alkaline citrate bath[J]. Electroplating Finishing(电镀与涂饰), 2009, 28(6): 1-4. |
[99] | Yang F Z (杨防祖), Song W B (宋维宝), Huang L (黄令), Yao G H (姚光华), Zhou S M (周绍民). Non-cyanide copper plating on steel substrate in alkaline tartrate bath[J]. Plating and Finishing(电镀与精饰), 2009, 31(6): 1-4. |
[100] | Yang F Z (杨防祖), Yu Y Y (余嫄嫄), Huang L (黄令), Yao G H (姚光华), Zhou S M (周绍民). Cyanide-free copper electroplating in sulfite/thiosulfate bath[J]. Electroplating Finishing(电镀与涂饰), 2009, 28(3): 1-3,9. |
[101] | Yang F Z (杨防祖), Zhao Y (赵媛), Tian Z Q (田中群), Zhou S M (周绍民). Process of alkaline cyanide-free copper electroplating on zinc-based alloy in citrate-tartrate complex system[J]. Electroplating Finishing(电镀与涂饰), 2010, 29(11): 4-7. |
[102] | Jiang Y F (蒋义峰), Chen M H (陈明辉), Yang F Z (杨防祖), Tian Z Q (田中群), Zhou S M (周绍民). Novel process of cyanide-free copper plating on steel and its application[J]. Electroplating Finishing(电镀与涂饰), 2012, 31(8): 7-10. |
[103] | Yang F Z (杨防祖), Wu W G (吴伟刚), Tian Z Q (田中群), Zhou S M (周绍民). Application of copper electrochemical deposition for the metallization of micropores[J]. Acta Phys. -Chim. Sin(物理化学学报), 2011, 27(9): 2135-2140. |
[104] | Wu W G (吴伟刚), Yang F Z (杨防祖), Luo M H (骆明辉), Tian Z Q (田中群), Zhou S M (周绍民). Electrodeposition of copper in a citrate bath and its application to a micro-electro-mechanical system[J]. Acta Phys. -Chim. Sin(物理化学学报), 2010, 26(10): 2625-2632. |
[1] | 孙琼, 杜海会, 孙田将, 李典涛, 程敏, 梁静, 李海霞, 陶占良. 基于山梨醇添加剂电解质的可逆锌电化学[J]. 电化学(中英文), 2024, 30(7): 2314002-. |
[2] | 张修庆, 唐帅, 付永柱. 锂硫电池电解液功能性添加剂研究进展[J]. 电化学(中英文), 2023, 29(4): 2217005-. |
[3] | 谭柏照, 梁剑伦, 赖子亮, 罗继业. 高均匀性的铜柱凸块电镀[J]. 电化学(中英文), 2022, 28(7): 2213004-. |
[4] | 沈钰, 李冰冰, 马艺, 王增林. 化学镀钴和超级化学镀填充的研究进展[J]. 电化学(中英文), 2022, 28(7): 2213002-. |
[5] | 徐佳莹, 王守绪, 苏元章, 杜永杰, 齐国栋, 何为, 周国云, 张伟华, 唐耀, 罗毓瑶, 陈苑明. 特殊整平剂甲基橙在通孔电镀铜的应用[J]. 电化学(中英文), 2022, 28(7): 2213003-. |
[6] | 纪执敬, 凌惠琴, 吴培林, 余瑞益, 于大全, 李明. 玻璃通孔三维互连镀铜填充技术发展现状[J]. 电化学(中英文), 2022, 28(6): 2104461-. |
[7] | 杨森, 王文昌, 张然, 秦水平, 吴敏娴, 光崎尚利, 陈智栋. 醇硫基丙烷磺酸钠对电解高性能锂电铜箔的影响[J]. 电化学(中英文), 2022, 28(6): 2104501-. |
[8] | 杨凯, 陈际达, 陈世金, 许伟廉, 郭茂桂, 廖金超, 吴熷坤. 高深径比通孔脉冲电镀添加剂及电镀参数的优化[J]. 电化学(中英文), 2022, 28(6): 2104491-. |
[9] | 缪桦, 李明瑞, 邹文中, 周国云, 王守绪, 叶晓菁, 朱凯. Sn-Ag-Cu三元合金焊料电沉积中添加剂的影响研究[J]. 电化学(中英文), 2022, 28(6): 2104411-. |
[10] | 战充波, 张润佳, 付旭, 孙海静, 周欣, 王保杰, 孙杰. 氯离子对ChCl-Urea低共熔溶剂中银电沉积的电化学行为影响[J]. 电化学(中英文), 2022, 28(5): 2111151-. |
[11] | 谢茂玲, 王钧, 胡晨吉, 郑磊, 孔华彬, 沈炎宾, 陈宏伟, 陈立桅. 基于非亲核电解液构建稳定的镁离子电池[J]. 电化学(中英文), 2022, 28(3): 2108561-. |
[12] | 黄波, 张新胜, 钮东方, 胡硕真. 对称季铵碱的烷基链长度对草酸电还原反应的影响[J]. 电化学(中英文), 2021, 27(5): 529-539. |
[13] | 张彪, 帅毅, 王玉, 杨纳川, 陈康华. 碳酸酯类电解液中Mg(NO3)2添加剂抑制锂枝晶生长的研究[J]. 电化学(中英文), 2021, 27(4): 423-428. |
[14] | 王翀, 彭川, 向静, 陈苑明, 何为, 苏新虹, 罗毓瑶. 印制电路中电镀铜技术研究及应用[J]. 电化学(中英文), 2021, 27(3): 257-268. |
[15] | 常增花, 韩富娟, 杨夕馨, 王建涛, 卢世刚. 纳米硅在含添加剂的高浓度电解液中循环特征及其表面协同成膜的研究[J]. 电化学(中英文), 2020, 26(5): 759-771. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||