电化学(中英文) ›› 2020, Vol. 26 ›› Issue (4): 510-520. doi: 10.13208/j.electrochem.200443
收稿日期:
2020-05-05
修回日期:
2020-05-20
出版日期:
2020-08-28
发布日期:
2020-07-06
通讯作者:
韩娜,李彦光
E-mail:hanna@suda.edu.cn;yanguang@suda.edu.cn
基金资助:
FAN Jia, HAN Na*(), LI Yan-guang*()
Received:
2020-05-05
Revised:
2020-05-20
Published:
2020-08-28
Online:
2020-07-06
Contact:
HAN Na,LI Yan-guang
E-mail:hanna@suda.edu.cn;yanguang@suda.edu.cn
摘要:
采用电化学方法将二氧化碳(CO2)还原转化为基础化学品或碳基燃料是目前极具前景的碳资源利用新方式. 考虑到该技术未来的发展方向和大规模应用需求,人们亟需开发具有高转化效率和高稳定性的电解设备. 在本文中,作者详细介绍了现阶段发展的两种流动池的结构特点及性能优势,阐述了每种反应体系的内在局限性, 深入分析了整个反应体系所用组件(电解池、气体扩散电极、离子交换膜)对于性能的影响. 最后,针对目前该领域存在的挑战及未来发展趋势进行了总结与展望.
中图分类号:
范佳, 韩娜, 李彦光. 基于流动池的电化学二氧化碳还原研究进展[J]. 电化学(中英文), 2020, 26(4): 510-520.
FAN Jia, HAN Na, LI Yan-guang. Electrochemical Carbon Dioxide Reduction in Flow Cells[J]. Journal of Electrochemistry, 2020, 26(4): 510-520.
表1
目前研究中常用的三种类型电解池特点比较
Reactor type | Characteristic | Advantage | Disadvantage |
---|---|---|---|
H-cells | Standard CO2RR reactors | Suitable for fast screening electrocatalysts, straightforward,low cost | Limited current density, not for commercial use |
Flow cells | Three channels for the circulation of CO2, catholyte and anolyte | No CO2 solubility and diffusion limit, compatible with alkaline electrolytes, suitable for liquid product production | Susceptible to GDE flooding, impurity deposition or carbonate precipitation |
MEAs | No catholyte,zero-gap configuration | Low impedance,suitable for high-pressure operation | Usually challenging to extract liquid products |
[1] | Gattuso J P, Magnan A, Billé R, et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios[J]. Science, 2015,349(6243):47221-47223. |
[2] |
Solomon S, Plattner G K, Knutti R, et al. Irreversible climate change due to carbon dioxide emissions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009,106(6):1704-1709.
URL pmid: 19179281 |
[3] | Mikkelsen M, Jørgensen M, Krebs F C. The teraton challenge. A review of fixation and transformation of carbon dioxide[J]. Energy & Environmental Science, 2010,3(1):43-81. |
[4] |
Zhu D D, Liu J L, Qiao S Z. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide[J]. Advanced Materials, 2016,28(18):3423-3452.
doi: 10.1002/adma.201504766 URL pmid: 26996295 |
[5] |
Ager J W, Lapkin A A. Chemical storage of renewable energy[J]. Science, 2018,360(6390):707-708.
doi: 10.1126/science.aat7918 URL pmid: 29773731 |
[6] |
Qiao J L, Liu Y Y, Hong F, et al. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels[J]. Chemical Society Reviews, 2014,43(2):631-675.
doi: 10.1039/c3cs60323g URL pmid: 24186433 |
[7] | Han N, Ding P, He L, et al. Promises of main group metal-based nanostructured materials for electrochemical CO2 reduction to formate[J]. Advanced Energy Materials, 2020,10(11):1902338. |
[8] |
Wu J H, Huang Y, Ye W, et al. CO2 reduction: from the electrochemical to photochemical approach[J]. Advanced Science, 2017,4(11):1700194.
URL pmid: 29201614 |
[9] |
Costentin C, Robert M, Savéant J M. Catalysis of the electrochemical reduction of carbon dioxide[J]. Chemical Society Reviews, 2013,42(6):2423-2436.
doi: 10.1039/c2cs35360a URL pmid: 23232552 |
[10] | Kortlever R, Shen J, Schouten K J P, et al. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide[J]. The Journal of Physical Chemistry Letters, 2015,6(20):4073-4082. |
[11] | Lu Q, Rosen J, Jiao F. Nanostructured metallic electrocatalysts for carbon dioxide reduction[J]. ChemCatChem, 2015,7(1):38-47. |
[12] |
Zhang L, Zhao Z J, Gong J. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms[J]. Angewandte Chemie International Edition, 2017,56(38):11326-11353.
doi: 10.1002/anie.201612214 URL pmid: 28168799 |
[13] | Wang Y F, Han P, Lv X M, et al. Defect and interface engineering for aqueous electrocatalytic CO2 reduction[J]. Joule, 2018,2(12):2551-2582. |
[14] |
He J F, Johnson N J J, Huang A X, et al. Electrocatalytic alloys for CO2 reduction[J]. ChemSusChem, 2018,11(1):48-57.
doi: 10.1002/cssc.201701825 URL pmid: 29205925 |
[15] |
Wang Y H, Liu J l, Wang Y F, et al. Tuning of CO2 reduction selectivity on metal electrocatalysts[J]. Small, 2017, 13(43):UNSP 1701809.
doi: 10.1002/smll.201700368 URL pmid: 28524361 |
[16] |
Jones J P, Prakash G S, Olah G A. Electrochemical CO2 reduction: recent advances and current trends[J]. Israel Journal of Chemistry, 2014,54(10):1451-1466.
doi: 10.1002/ijch.201400081 URL |
[17] | Ringe S, Clark E L, Resasco J, et al. Understanding cation effects in electrochemical CO2 reduction[J]. Energy & Environmental Science, 2019,12(10):3001-3014. |
[18] | Han N, Wang Y, Ma L, et al. Supported cobalt polyphthalocyanine for high-performance electrocatalytic CO2 reduction[J]. Chem, 2017,3(4):652-664. |
[19] | Han N, Wang Y, Yang H, et al. Ultrathin bismuth nano-sheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate[J]. Nature Com-munications, 2018,9(1):1320. |
[20] | Yang H, Han N, Deng J, et al. Selective CO2 reduction on 2D mesoporous Bi nanosheets[J]. Advanced Energy Materials, 2018,8(35):1801536. |
[21] | Yang H, Huang Y, Deng J, et al. Selective electrocatalytic CO2 reduction enabled by SnO2 nanoclusters[J]. Journal of Energy Chemistry, 2019,37:93-96. |
[22] | Han N, Wang Y, Deng J, et al. Self-templated synjournal of hierarchical mesoporous SnO2 nanosheets for selective CO2 reduction[J]. Journal of Materials Chemistry A, 2019,7(3):1267-1272. |
[23] | Zhang X R (张旭锐), Shao X L (邵晓玲), Yi J (易金), et al. Statuses, challenges and strategies in the development of low-temperature carbon dioxide electroreduction technology[J]. Journal of Electrochemistry (电化学), 2019,25(4):413-425. |
[24] | Yang F (杨帆), Deng P L (邓培林), Han Y J (韩优嘉), et al. Copper-based compounds for electrochemical reduction of carbon dioxide[J]. Journal of Electrochemistry (电化学), 2019,25(4):426-444. |
[25] | Zhou R (周睿), Han N (韩娜), Li Y G (李彦光). Recent advances in bismuth-based CO2 reduction electrocatalysts[J]. Journal of Electrochemistry (电化学), 2019,25(4):445-454. |
[26] | Salvatore D A, Weekes D M, He J, et al. Electrolysis of Gaseous CO2 to CO in a flow cell with a bipolar membrane[J]. ACS Energy Letters, 2017,3(1):149-154. |
[27] |
Weekes D M, Salvatore D A, Reyes A, et al. Electrolytic CO2 reduction in a flow cell[J]. Accounts of Chemical Research, 2018,51(4):910-918.
doi: 10.1021/acs.accounts.8b00010 URL pmid: 29569896 |
[28] | Sun Z Y, Ma T, Tao H C, et al. Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials[J]. Chem, 2017,3(4):560-587. |
[29] | Lu X, Leung D Y, Wang H, et al. Electrochemical reduction of carbon dioxide to formic acid[J]. ChemElectroChem。 2014,1(5):836-849. |
[30] | Gupta N, Gattrell M, MacDougall B, Calculation for the cathode surface concentrations in the electrochemical reduction of CO2 in KHCO3 solutions[J]. Journal of Applied Electrochemistry, 2006,36(2):161-172. |
[31] | Burdyny T, Smith W A. CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions[J]. Energy & Environmental Science, 2019,12(5):1442-1453. |
[32] |
Jouny M, Lv J J, Cheng T, et al. Formation of carbon-nitrogen bonds in carbon monoxide electrolysis[J]. Nature Chemistry, 2019,11(9):846-851.
URL pmid: 31444485 |
[33] | Tan Y C, Lee K B, Song H, et al. Modulating local CO2 concentration as a general strategy for enhancing C-C coupling in CO2 electroreduction[J]. Joule, 2020,4(5):1104-1120. |
[34] |
Merino Garcia I, Albo J, Irabien A. Tailoring gas-phase CO2 electroreduction selectivity to hydrocarbons at Cu nanoparticles[J]. Nanotechnology, 2017,29(1):014001.
doi: 10.1088/1361-6528/aa994e URL pmid: 29119948 |
[35] | Dewulf D W, Bard A J. The electrochemical reduction of CO2 to CH4 and C2H4 at Cu/Nafion electrodes (solid polymer electrolyte structures)[J]. Catalysis Letters, 1988,1(1/3):73-79. |
[36] | Hori Y, Ito H, Okano K, et al. Silver-coated ion exchange membrane electrode applied to electrochemical reduction of carbon dioxide[J]. Electrochimica Acta, 2003,48(18):2651-2657. |
[37] |
Aeshala L M, Uppaluri R, Verma A. Electrochemical conversion of CO2 to fuels: tuning of the reaction zone using suitable functional groups in a solid polymer electrolyte[J]. Physical Chemistry Chemical Physics, 2014,16(33):17588-17594.
doi: 10.1039/c4cp02389g URL pmid: 25025524 |
[38] | Pǎtru A, Binninger T, Pribyl B, et al. Design principles of bipolar electrochemical co-electrolysis cells for efficient reduction of carbon dioxide from gas phase at low temperature[J]. Journal of The Electrochemical Society, 2019,166(2):F34-F43. |
[39] | Li Y C, Zhou D, Yan Z, et al. Electrolysis of CO2 to syngas in bipolar membrane-based electrochemical cells[J]. ACS Energy Letters, 2016,1(6):1149-1153. |
[40] | McDonald M B, Ardo S, Lewis N S, et al. Use of bipolar membranes for maintaining steady state pH gradients in membrane-supported, solar-driven water splitting[J]. Che-mSusChem, 2014,7(11):3021-3027. |
[41] | Reiter R S, White W, Ardo S. Communication-electrochemical characterization of commercial bipolar membranes under electrolyte conditions relevant to solar fuels technologies[J]. Journal of The Electrochemical Society, 2016,163(4):H3132-H3134. |
[42] | Vargas Barbosa N M, Geise G M, Hickner M A, et al. Assessing the utility of bipolar membranes for use in photoelectrochemical water-splitting cells[J]. ChemSus-Chem, 2014,7(11):3017-3020. |
[43] | Chen C, Kotyk J F K, Sheehan S W, Progress toward commercial application of electrochemical carbon dioxide reduction[J]. Chem, 2018,4(11):2571-2586. |
[44] | Gong Q, Ding P, Xu M, et al. Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction[J]. Nature Co-mmunications, 2019,10(1):2807. |
[45] | Jiang K, Sandberg R B, Akey A J, et al. Metal ion cycling of Cu foil for selective C-C coupling in electrochemical CO2 reduction[J]. Nature Catalysis, 2018,1(2):111-119. |
[46] |
Jhong H R M, Tornow C E, Smid B, et al. A nitrogen-doped carbon catalyst for electrochemical CO2 conversion to CO with high selectivity and current density[J]. ChemSusChem, 2017,10(6):1094-1099.
doi: 10.1002/cssc.201600843 URL pmid: 27791338 |
[47] | Liang C, Kim B, Yang S, et al. High efficiency electrochemical reduction of CO2 beyond the two-electron transfer pathway on grain boundary rich ultra-small SnO2 nanoparticles[J]. Journal of Materials Chemistry A, 2018,6(22):10313-10319. |
[48] | Kopljar D, Wagner N, Klemm E. Transferring electrochemical CO2 reduction from semi-batch into continuous operation mode using gas diffusion electrodes[J]. Chemical Engineering & Technology, 2016,39(11):2042-2050. |
[49] |
Dinh C T, Burdyny T, Kibria M G, et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface[J]. Science, 2018,360(6390):783-787.
doi: 10.1126/science.aas9100 URL pmid: 29773749 |
[50] |
Hoang T T, Verma S, Ma S, et al. Nanoporous copper-silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol[J]. Journal of the American Chemical Society, 2018,140(17):5791-5797.
doi: 10.1021/jacs.8b01868 URL pmid: 29620896 |
[51] | Lee S, Park G, Lee J. Importance of Ag-Cu biphasic boundaries for selective electrochemical reduction of CO2 to ethanol[J]. ACS Catalysis, 2017,7(12):8594-8604. |
[52] |
Ma S, Sadakiyo M, Heima M, et al. Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu-Pd catalysts with different mixing patterns[J]. Journal of the American Chemical Society, 2017,139(1):47-50.
doi: 10.1021/jacs.6b10740 URL pmid: 27958727 |
[53] |
Ren S, Joulié D, Salvatore D, et al. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell[J]. Science, 2019,365(6451):367-369.
doi: 10.1126/science.aax4608 URL pmid: 31346062 |
[54] | Del Castillo A, Alvarez Guerra M, Solla Gullón J, et al. Sn nanoparticles on gas diffusion electrodes: Synjournal, characterization and use for continuous CO2 electroreduction to formate[J]. Journal of CO2 Utilization, 2017,18:222-228. |
[55] |
De Arquer F P G, Dinh C T, Ozden A, et al. CO2 electrolysis to multicarbon products at activities greater than 1 A·cm-2 [J]. Science, 2020,367(6478):661-666.
doi: 10.1126/science.aay4217 URL pmid: 32029623 |
[56] | Lv J J, Jouny M, Luc W, et al. A highly porous copper electrocatalyst for carbon dioxide reduction[J]. Advanced Materials, 2018,30(49):1803111. |
[57] | Ma W C, Xie S J, Liu T T, et al. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C-C coupling over fluorine-modified copper[J]. Nature Catalysis, 2020,3(6):478-487. |
[58] |
Li F, Thevenon A, Rosas Hernández A, et al. Molecular tuning of CO2-to-ethylene conversion[J]. Nature, 2020,577(7791):509-513.
doi: 10.1038/s41586-019-1782-2 URL pmid: 31747679 |
[59] | Yin Z L, Peng H Q, Wei X, et al. An alkaline polymer electrolyte CO2 electrolyzer operated with pure water[J]. Energy & Environmental Science, 2019,12(8):2455-2462. |
[60] |
Ren S, Joulie D, Salvatore D, et al. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell[J]. Science, 2019,365(6451):367-369.
doi: 10.1126/science.aax4608 URL pmid: 31346062 |
[61] | Zheng T T, Jiang K, Ta N, et al. Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst[J]. Joule, 2019,3(1):265-278. |
[62] |
Gabardo C M, O’Brien C P, Edwards J P, et al. Continuous carbon dioxide electroreduction to concentrated multi-carbon products using a membrane electrode assembly[J]. Joule, 2019,3(11):2777-2791.
doi: 10.1016/j.joule.2019.07.021 URL |
[63] | Wang X, Wang Z Y, de Arquer FPG, et al. Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation[J]. Nature Energy, 2020,5(6):478-486. |
[64] | Xia C, Zhu P, Jiang Q, et al. Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices[J]. Nature Energy, 2019,4(9):776-785. |
[1] | 高梦婷, 卫莹, 霍雪萌, 朱文洁, 刘箐箐, 强晋源, 刘婉婉, 王颖, 李旭, 黄剑锋, 冯永强. 氮掺杂碳纳米管上钴和钌位点之间的电子通信促进碱性析氢反应[J]. 电化学(中英文), 2024, 30(9): 2403081-. |
[2] | 王昱喆, 蒋卓良, 温波, 黄耀辉, 李福军. 锂氧电池中钌基电催化剂的研究进展[J]. 电化学(中英文), 2024, 30(8): 2314004-. |
[3] | 韦聚才, 易娟, 吴旭. 电化学法深度处理电厂脱硫废水[J]. 电化学(中英文), 2024, 30(4): 2205041-. |
[4] | 万紫轩, Aidar Kuchkaev, Dmitry Yakhvarov, 康雄武. 单分散Cu-TCPP/Cu2O杂化微球:一种具有优异电还原CO2产C2性能的级联电催化剂[J]. 电化学(中英文), 2024, 30(1): 2303271-. |
[5] | 高玲玉, 杨琳, 王晨辉, 单桂轩, 霍欣怡, 张梦飞, 李韡, 张金利. 碱性电解槽三维两相CFD模拟研究[J]. 电化学(中英文), 2023, 29(9): 2207081-. |
[6] | 郑天龙, 欧明玉, 徐松, 毛信表, 王释一, 和庆钢. 一体式可再生燃料电池双功能氧催化剂的研究进展[J]. 电化学(中英文), 2023, 29(7): 2205301-. |
[7] | 杨云锐, 董欢欢, 郝志强, 何祥喜, 杨卓, 李林, 侴术雷. 高性能锂硫电池用钴/碳复合材料硫宿主[J]. 电化学(中英文), 2023, 29(4): 2217003-. |
[8] | 冯辛, 刘博文, 郭可鑫, 范林丰, 王根香, 次素琴, 温珍海. 基于阳极甘油氧化电催化的碱/酸混合电解制氢研究[J]. 电化学(中英文), 2023, 29(2): 2215005-. |
[9] | 孟庆成, 金林薄, 马梦泽, 高学庆, 陈爱兵, 周道金, 孙晓明. 层状金属氢氧化物中铁位点辅助分散铂纳米颗粒用于高效甲醇氧化[J]. 电化学(中英文), 2023, 29(2): 2215007-. |
[10] | 屈小峰, 唐宇婷, 何鑫程, 周佳晟, 唐子恒, 冯文华, 刘军. PEG水系电解液用于高性能锌碘双离子电池[J]. 电化学(中英文), 2023, 29(11): 211026-. |
[11] | 杨武, 郑雪凡, 武玉琪, 汤士军, 龚正良. LiF-Sn复合修饰层改性石榴石/锂金属界面[J]. 电化学(中英文), 2023, 29(11): 2204071-. |
[12] | 韦宗楠, 曹敏纳, 曹荣. 瓜环基金属纳米催化剂的电化学研究进展[J]. 电化学(中英文), 2023, 29(1): 2215008-. |
[13] | 郭鸿波, 王亚妮, 郭凯, 雷海涛, 梁作中, 张学鹏, 曹睿. 吸电子和亲水性Co-卟啉促进电催化氧还原反应的研究[J]. 电化学(中英文), 2022, 28(9): 2214002-. |
[14] | 梁宵, 张可新, 沈雨澄, 孙轲, 石磊, 陈辉, 郑克岩, 邹晓新. 钙钛矿型水氧化电催化剂[J]. 电化学(中英文), 2022, 28(9): 2214004-. |
[15] | 周澳, 郭伟健, 王月青, 张进涛. 焦耳热快速合成双功能电催化剂用于高效水分解[J]. 电化学(中英文), 2022, 28(9): 2214007-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||