电化学(中英文) ›› 2020, Vol. 26 ›› Issue (4): 495-509. doi: 10.13208/j.electrochem.200446
收稿日期:
2020-05-21
修回日期:
2020-06-12
出版日期:
2020-08-28
发布日期:
2020-06-28
通讯作者:
钮东方,张新胜
E-mail:dfniu@ecust.edu.cn;xszhang@ecust.edu.cn
基金资助:
ZHANG Yu-ning, NIU Dong-fang*(), HU Shuo-zhen, ZHANG Xin-sheng*()
Received:
2020-05-21
Revised:
2020-06-12
Published:
2020-08-28
Online:
2020-06-28
Contact:
NIU Dong-fang,ZHANG Xin-sheng
E-mail:dfniu@ecust.edu.cn;xszhang@ecust.edu.cn
摘要:
将二氧化碳通过电化学方法转化为化工原料再利用,不仅可以有效缓减温室效应,而且可以实现自然界的碳循环,对绿色化学与可持续发展意义重大. 本文简要地介绍了二氧化碳电还原的优势及其基本反应原理并综述了近年来基于纳米金属催化剂的一系列活性增强策略的研究进展. 重点探究了合金效应、界面工程、协同效应、缺陷工程以及载体效应等对纳米金属电催化还原二氧化碳性能的影响及相关反应机理. 基于以上策略,提出未来开发面向工业化应用的二氧化碳电还原催化剂面临的挑战与前景.
中图分类号:
张钰宁, 钮东方, 胡硕真, 张新胜. 基于纳米金属的增强效应在CO2电还原反应中的应用进展[J]. 电化学(中英文), 2020, 26(4): 495-509.
ZHANG Yu-ning, NIU Dong-fang, HU Shuo-zhen, ZHANG Xin-sheng. Recent Progress on Enhancing Effect of Nanosized Metals for Electrochemical CO2 Reduction[J]. Journal of Electrochemistry, 2020, 26(4): 495-509.
表1
CO2电还原反应的部分标准电极电势(25 oC,1 atm)[7]
Half reaction | E0/V(vs. NHE) |
---|---|
CO2(g) + e → CO2- | -1.9 |
CO2(g) + 2H+ + 2e → HCOOH (l) | -0.61 |
CO2(g) + 2H+ + 2e → CO(g) + H2O(l) | -0.53 |
2CO2(g) + 2H+ + 2e → H2C2O4 (aq) | -0.49 |
CO2(g) + 4H+ + 4e → HCHO(l) + H2O(l) | -0.48 |
CO2(g) + 4H+ + 4e → C(g) + 2H2O(l) | -0.20 |
CO2(g) + 6H+ + 6e → CH3OH(g) + H2O(l) | -0.38 |
CO2(g) + 8H+ + 8e → CH4 (g) + 2H2O(l) | -0.24 |
2CO2(g) + 12H+ + 12e → CH3CH2OH(g) + 3H2O(l) | 0.08 |
2CO2(g) + 12H+ + 12e → C2H4 (g) + 4H2O(l) | 0.06 |
[1] |
Moss R H, Edmonds J A, Hibbard K A, et al. The next generation of scenarios for climate change research and assessment[J]. Nature, 2010,463(7282):747-756.
URL pmid: 20148028 |
[2] | IPCC. Special report on global warming of 1. 5oC[M]. UK: Cambridge University Press, 2018. |
[3] |
Gong Z J, Li Y R, Wu H L. Direct copolymerization of carbon dioxide and 1,4-butanediol enhanced by ceria nanorod catalyst[J]. Applied Catalysis B - Environmental, 2020,265:118524-118536.
doi: 10.1016/j.apcatb.2019.118524 URL |
[4] | Li P Y, Liu L, An W J, et al. Ultrathin porous g-C3N4 nanosheets modified with AuCu alloy nanoparticles and C-C coupling photothermal catalytic reduction of CO2 to ethanol[J]. Applied Catalysis B - Environmental, 2020,266:118618-118626. |
[5] | Duan X C, Xu J T, Wei Z X, et al. Metal-free carbon materials for CO2 electrochemical reduction[J]. Advanced Materials, 2017,29(41):170-178. |
[6] |
Jiang Y, Chu N, Qian D K. Microbial electrochemical stimulation of caproate production from ethanol and carbon dioxide[J]. Bioresource Technology, 2020,295:122266-122274.
URL pmid: 31669871 |
[7] |
Eric E B, Clifford P K, Aaron S, et al. Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels[J]. Chemical Society Reviews, 2009,38(1):89-99.
doi: 10.1039/b804323j URL pmid: 19088968 |
[8] | Maria J. Electrochemical carbon dioxide reduction-fundamental and applied topics[J]. Journal of the University of Chemical Technology and Metallurgy, 2007,42:333-344. |
[9] | Zhang X R (张旭锐), Shao X L (邵晓琳), Yi J (易金), et al. Statuses, challenges and strategies in the development of low-temperature carbon dioxide electroreduction technology[J]. Journal of Electrochemistry (电化学), 2019,25(4):413-425. |
[10] | Hori Y, Wakebe H, Tsukamoto T, et al. Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media[J]. Electrochimica Acta, 1994,39:1833-1839. |
[11] |
Rahaman M, Dutta A, Broekmann P. Size-dependent activity of palladium nanoparticles (Pd-NPs): efficient conversion of CO2 into formate at low overpotentials[J]. ChemSusChem, 2017,10(8):1733-1741.
doi: 10.1002/cssc.201601778 URL pmid: 28101986 |
[12] | Hossain M N, Liu Z, Wen J, et al. Enhanced catalytic activity of nanoporous Au for the efficient electrochemical reduction of carbon dioxide[J]. Applied Catalysis B - Environmental, 2018,236:483-489. |
[13] |
Natsui K, Iwakawa H, Ikemiya N, et al. Stable and highly efficient electrochemical production of formic acid from carbon dioxide using diamond electrodes[J]. Angewandte Chemie International Edition, 2018,57(10):2639-2643.
URL pmid: 29345846 |
[14] | Lei W (雷文), Xiao W P (肖卫平), Wang D L (王得丽). Recent progress in copper-based catalysts for electrochemical CO2 reduction[J]. Journal of Electrochemistry (电化学), 2019,25(4):455-466. |
[15] | Ye K, Cao A, Shao J Q, et al. Synergy effects on Sn-Cu alloy catalyst for efficient CO2 electroreduction to formate with high mass activity[J]. Science Bulletin, 2020,9(65):711-719. |
[16] | Lai Q, Yang N, Yuan G Q. Highly efficient In-Sn alloy catalysts for electrochemical reduction of CO2 to formate[J]. Electrochemistry Communications, 2017,83:24-27. |
[17] | Zhang T T, Qiu Y L, Yao P F, et al. Bi-modified Zn catalyst for efficient CO2 electrochemical reduction to formate[J]. ACS Sustainable Chemistry & Engineering, 2019,7(18):15190-15196. |
[18] |
He J F, Johnson N J J, Huang A X, et al. JElectrocatalytic alloys for CO2 reduction[J]. ChemSusChem, 2017,11(1):48-57.
doi: 10.1002/cssc.201701825 URL pmid: 29205925 |
[19] |
Zhang Q, Tao S H, Du J, et al. A cold plasma-activated in situ AgCo surface alloy for enhancing the electroreduction of CO2 to ethanol[J]. Journal of Materials Chemistry A, 2020,8(17):8410-8420.
doi: 10.1039/D0TA01262A URL |
[20] |
Li Q, Fu J J, Zhu W L, et al. Tuning Sn-catalysis for electrochemical reduction of CO2 to CO via the core/shell Cu/SnO2 structure[J]. Journal of the American Chemical Society, 2017,139(12):4290-4293.
doi: 10.1021/jacs.7b00261 URL pmid: 28291338 |
[21] |
Luc W, Collins C, Wang S W, et al. Ag-Sn bimetallic catalyst with a core-shell structure for CO2 reduction[J]. Journal of the American Chemical Society, 2017,139(5):1885-1893.
doi: 10.1021/jacs.6b10435 URL pmid: 28094994 |
[22] |
Zhang A, He R, Li H P, et al. Nickel doping in atomically thin tin disulfide nanosheets enables highly efficient CO2 reduction[J]. Angewandte Chemie International Edition, 2018,57(34):10954-10958.
doi: 10.1002/anie.201806043 URL pmid: 29953722 |
[23] |
Yuan X, Luo Y T, Zhang B, et al. Decoration of In nano-particles on In2S3 nanosheets enables efficient electrochemical reduction of CO2[J]. Chemical Communications, 2020,56(30):4212-4215.
URL pmid: 32175531 |
[24] | Sheng W C, Kattel S, Yao S Y, et al. Electrochemical reduction of CO2 to synjournal gas with controlled CO/H2 ratios[J]. Energy & Environmental Science, 2017,10(5):1180-1185. |
[25] |
Ma S C, Sadakiyo M, Heima M, et al. Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu-Pd catalysts with different mixing patterns[J]. Journal of the American Chemical Society, 2016,139(1):47-56.
doi: 10.1021/jacs.6b10740 URL pmid: 27958727 |
[26] |
Zhang W Y, Qin Q, Dai L, et al. Electrochemical reduction of carbon dioxide to methanol on hierarchical Pd/SnO2 nanosheets with abundant Pd-O-Sn interfaces[J]. Angewandte Chemie International Edition, 2018,57(30):9475-9479.
URL pmid: 29785780 |
[27] |
Gao D F, Zhang Y, Zhou Z W, et al. Enhancing CO2 electroreduction with the metal-oxide interface[J]. Journal of the American Chemical Society, 2017,139(16):5652-5655.
doi: 10.1021/jacs.7b00102 URL pmid: 28391686 |
[28] |
Jhong H R, Tornow C E, Kim C, et al. Gold nanoparticles on polymer-wrapped carbon nanotubes: An efficient and selective catalyst for the electroreduction of CO2[J]. ChemPhysChem, 2017,18(22):3274-3279.
doi: 10.1002/cphc.201700815 URL pmid: 28985010 |
[29] | Varela A S, Ranjbar S N, Steinberg J, et al. Metal-doped nitrogenated carbon as an efficient catalyst for direct CO2 electroreduction to CO and hydrocarbons[J]. Angewandte Chemie International Edition, 2015,127(37):10908-10912. |
[30] |
Cao T D, Thomas B, Md G K, et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface[J]. Science, 2018,360(6390):783-787.
URL pmid: 29773749 |
[31] |
Zhang S, Kang P, Ubnoske S, et al. Polyethylenimine-enhanced electrocatalytic reduction of CO2 to formate at nitrogen-doped carbon nanomaterials[J]. Journal of the American Chemical Society, 2014,136(22):7845-7848.
URL pmid: 24779427 |
[32] |
Ma Z Q, Lian C, Niu D F, et al. Enhancing CO2 electroreduction with Au/pyridine/carbon nanotubes hybrid structures[J]. ChemSusChem, 2019,12(8):1724-1731.
doi: 10.1002/cssc.201802940 URL pmid: 30761769 |
[33] | Wang Q C, Lei Y P, Wang D S, et al. Defect engineering in earth-abundant electrocatalysts for CO2 and N2 reduction[J]. Energy & Environmental Science, 2019,12(6):1730-1750. |
[34] |
Rahman D, Emma C L, Nicholas M B, et al. Modulating activity through defect engineering of tin oxides for electrochemical CO2 reduction[J]. Advanced Science, 2019,6(18):1900678-1900687.
doi: 10.1002/advs.201900678 URL pmid: 31559127 |
[35] | Wang Y F, Han P, Lv X M. Defect and interface engineering for aqueous electrocatalytic CO2 reduction[J]. Joule, 2018,2(12):2551-2582. |
[36] | Zhang Y F (张月凤), Liu J J (刘建军), WEI Z X (危增曦), et al. Single-layer oxygen deficiency δ-MnO2 for electrochemical CO2 reduction[J]. Journal of Electrochemistry (电化学), 2019,25(4):477-485. |
[37] | Dong H, Zhang L, Li L L, et al. Abundant Ce3+ ions in Au-CeOx nanosheets to enhance CO2 electroreduction performance [J]. Small, 2019,15(17):1900289. |
[38] |
Cui X Q, Pan Z Y, Zhang L J, et al. CO2 reduction: selective etching of nitrogen‐doped carbon by steam for enhanced electrochemical CO2 reduction[J]. Advanced Energy Materials, 2017,7(22):1701456.
doi: 10.1002/aenm.201701456 URL |
[39] | An X W, Li S S, Yoshida A, et al. Electrodeposition of tin-based electrocatalysts with different surface tin species distributions for electrochemical reduction of CO2 to HCOOH[J]. ACS Sustainable Chemistry & Engineering, 2019,7(10):9360-9368. |
[40] |
Daiyan R, Lovell E C, Amal R, et al. Modulating activity through defect engineering of tin oxides for electrochemical CO2 reduction[J]. Advanced Science, 2019,6(18):1900678.
URL pmid: 31559127 |
[41] |
Zhang J B, Yin R G, Shao Q, et al. Oxygen vacancies in amorphous InOx nanoribbons enhance CO2 adsorption and activation for CO2 electroreduction[J]. Angewandte Chemie International Edition, 2019,58(17):5609-5613.
doi: 10.1002/anie.201900167 URL pmid: 30815992 |
[42] |
Gao S, Sun Z T, Liu W, et al. Atomic layer confined vacancies for atomic-level insights into carbon dioxide electroreduction[J]. Nature Communications, 2017,8:14503.
doi: 10.1038/ncomms14503 URL pmid: 28220847 |
[43] | Zhou Y (周远), Han N (韩娜), Li Y G (李彦光). Recent progress on Pd-based nanomaterials for electrochemical CO2 reduction[J]. Acta Physico - Chimica Sinica (物理化学学报), 2020,36(X):2001041. DOI: 10.3866/PKU.WHXB202001041. |
[44] |
Dong H, Zhang L, Yang P P, et al. Facet design promotes electroreduction of carbon dioxide to carbon monoxide on palladium nanocrystals[J]. Chemical Engineering Science, 2019,194:29-35.
doi: 10.1016/j.ces.2018.03.029 URL |
[45] | Huang Q L, Liu H M, An W, et al. Synergy of a mtallic NiCo dimer anchored on a C2N-graphene matrix promotes the electrochemical CO2 reduction reaction[J]. ACS Sustainable Chemistry & Engineering, 2019,7(23):19113-19121. |
[46] |
He Y H, Jiang W J, Zhang Y. Pore-structure-directed CO2 electroreduction to formate on SnO2/C catalysts[J]. Journal of Materials Chemistry A, 2019,7(31):18428-18433.
doi: 10.1039/C9TA05937G URL |
[47] | Wang Y, Zhou J, Lv W X, et al. Electrochemical reduction of CO2 to formate catalyzed by electroplated tin coating on copper foam[J]. Applied Surface Science, 2015,362(36):394-398. |
[48] | Yang Y (杨艳), Zhang Y (张云), Hu J S (胡劲松), et al. Progress in the mechanisms and materials for CO2 electroreduction toward C2+ products [J]. Acta Physico - Chimica Sinica (物理化学学报), 2020,36(1):1906085. DOI: 10.3866/PKU.WHXB201906085. |
[49] |
Zhang S, Kang P, Meyer T J. Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate[J]. Journal of the American Chemical Society, 2014,136(5):1734-1737.
doi: 10.1021/ja4113885 URL pmid: 24417470 |
[50] | Tackett B M, Sheng W C, Chen J G. Opportunities and challenges in utilizing metal-modified transition metal carbides as low-cost electrocatalysts[J]. Joule, 2017,1(2):253-263. |
[51] |
Hunt S T, Milina M, Alba-Rubio A C, et al. Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts[J]. Science, 2016,352(6288):974-978.
doi: 10.1126/science.aad8471 URL pmid: 27199426 |
[52] | Kim J H, Woo H, Choi J, et al. CO2 Electroreduction on Au/TiC: enhanced activity due to metal-support interaction[J]. ACS Catalysis, 2017,7(3):2101-2106. |
[53] | Zhang L, Mao F X, Zheng L R, et al. Tuning metal catalyst with metal-C3N4 interaction for efficient CO2 electroreduction[J]. ACS Catalysis, 2018,8(12):11035-11041. |
[54] |
An X W, Li S S, Yoshida A, et al. Bi-doped SnO nano-sheets supported on Cu foam for electrochemical reduction of CO2 to HCOOH[J]. ACS Applied Materials & Interfaces, 2019,11(45):42114-42122.
doi: 10.1021/acsami.9b13270 URL pmid: 31623434 |
[55] | Maor F, Baruch, James E, et al. Mechanistic insights into the reduction of CO2 on tin electrodes using in situ ATR-IR spectroscopy[J]. ACS Catalysis, 2015,5(5):3148-3156. |
[56] | Deng P L, Wang H M, Qi R J, et al. Bismuth oxides with enhanced bismuth-oxygen structure for efficient electrochemical reduction of carbon dioxide to formate[J]. ACS Catalysis, 2020,10(1):743-750. |
[57] |
Adarsh K S, Chandrasekaran N, Chakrapani V. In-situ spectroscopic techniques as critical evaluation tools for electrochemical carbon dioxide reduction: a mini review[J]. Frontiers in Chemistry, 2020,8:137.
doi: 10.3389/fchem.2020.00137 URL pmid: 32266204 |
[58] | Firet N J, Blommaert M A, Burdyny T, et al. Operando EXAFS study reveals presence of oxygen in oxide-derived silver catalysts for electrochemical CO2 reduction[J]. Journal of Materials Chemistry A, 2019,7(6):2597-2607. |
[59] | Zhang Y N, Liu L, Shi L, et al. Enhancing CO2 electroreduction on nanoporous silver electrode in the presence of halides[J]. Electrochimica Acta, 2019,313:561-569. |
[60] | Chen C Z, Pang Y J, Zhang F H, et al. Sharp Cu@Sn nanocones on Cu foam for highly selective and efficient electrochemical reduction of CO2 to formate[J]. Journal of Materials Chemistry A, 2018,6(40):19621-19630. |
[1] | 高梦婷, 卫莹, 霍雪萌, 朱文洁, 刘箐箐, 强晋源, 刘婉婉, 王颖, 李旭, 黄剑锋, 冯永强. 氮掺杂碳纳米管上钴和钌位点之间的电子通信促进碱性析氢反应[J]. 电化学(中英文), 2024, 30(9): 2403081-. |
[2] | 王昱喆, 蒋卓良, 温波, 黄耀辉, 李福军. 锂氧电池中钌基电催化剂的研究进展[J]. 电化学(中英文), 2024, 30(8): 2314004-. |
[3] | 韦聚才, 易娟, 吴旭. 电化学法深度处理电厂脱硫废水[J]. 电化学(中英文), 2024, 30(4): 2205041-. |
[4] | 万紫轩, Aidar Kuchkaev, Dmitry Yakhvarov, 康雄武. 单分散Cu-TCPP/Cu2O杂化微球:一种具有优异电还原CO2产C2性能的级联电催化剂[J]. 电化学(中英文), 2024, 30(1): 2303271-. |
[5] | 郑天龙, 欧明玉, 徐松, 毛信表, 王释一, 和庆钢. 一体式可再生燃料电池双功能氧催化剂的研究进展[J]. 电化学(中英文), 2023, 29(7): 2205301-. |
[6] | 杨云锐, 董欢欢, 郝志强, 何祥喜, 杨卓, 李林, 侴术雷. 高性能锂硫电池用钴/碳复合材料硫宿主[J]. 电化学(中英文), 2023, 29(4): 2217003-. |
[7] | 冯辛, 刘博文, 郭可鑫, 范林丰, 王根香, 次素琴, 温珍海. 基于阳极甘油氧化电催化的碱/酸混合电解制氢研究[J]. 电化学(中英文), 2023, 29(2): 2215005-. |
[8] | 孟庆成, 金林薄, 马梦泽, 高学庆, 陈爱兵, 周道金, 孙晓明. 层状金属氢氧化物中铁位点辅助分散铂纳米颗粒用于高效甲醇氧化[J]. 电化学(中英文), 2023, 29(2): 2215007-. |
[9] | 张芯婉, 孟广源, 方立强, 常定明, 李童, 胡锦文, 陈鹏, 刘勇弟, 张乐华. 基于BP神经网络的电化学还原硝酸盐过程智能控制[J]. 电化学(中英文), 2023, 29(12): 211215-. |
[10] | 韦宗楠, 曹敏纳, 曹荣. 瓜环基金属纳米催化剂的电化学研究进展[J]. 电化学(中英文), 2023, 29(1): 2215008-. |
[11] | 郭鸿波, 王亚妮, 郭凯, 雷海涛, 梁作中, 张学鹏, 曹睿. 吸电子和亲水性Co-卟啉促进电催化氧还原反应的研究[J]. 电化学(中英文), 2022, 28(9): 2214002-. |
[12] | 梁宵, 张可新, 沈雨澄, 孙轲, 石磊, 陈辉, 郑克岩, 邹晓新. 钙钛矿型水氧化电催化剂[J]. 电化学(中英文), 2022, 28(9): 2214004-. |
[13] | 周澳, 郭伟健, 王月青, 张进涛. 焦耳热快速合成双功能电催化剂用于高效水分解[J]. 电化学(中英文), 2022, 28(9): 2214007-. |
[14] | 王英超, 马自在, 吴一凡, 王孝广. GCP载钯颗粒复合材料的制备及其电化学合成氨性能研究[J]. 电化学(中英文), 2022, 28(5): 2104091-. |
[15] | 毛麟, 钮东方, 胡硕真, 张新胜. 电化学合成乙酰基吡嗪[J]. 电化学(中英文), 2022, 28(5): 2107061-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||