[1] |
Kong F T, Longo R C, Yeon D H , et al. Multivalent Li-site doping of Mn oxides for Li-ion batteries[J]. The Journal of Physical Chemistry C, 2015,119(38):21904-21912.
doi: 10.1021/acs.jpcc.5b06844
URL
|
[2] |
Zuo Y X, Li B, Jiang N , et al. A high-capacity O2-type Li-rich cathode material with a single-layer Li2MnO3 superstructure[J]. Advanced Materials, 2018,30(16):1707255-1707255.
doi: 10.1002/adma.201707255
URL
pmid: 29532965
|
[3] |
Xiang Y H, Wu X . Enhanced electrochemical performances of Li2MnO3 cathode materials by Al doping[J]. Ionics, 2018,24(1):83-89.
|
[4] |
Wang Z Q, Wu M S, Xu B , et al. Improving the electrical conductivity and structural stability of the Li2MnO3 cathode via P doping[J]. Journal of Alloys and Compounds, 2016,658:818-823.
|
[5] |
Zhao W, Xiong L L, Xu Y L , et al. High performance Li2MnO3/rGO composite cathode for lithium ion batteries[J]. Journal of Power Sources, 2017,349:11-17.
|
[6] |
Tan X, Liu R, Xie C , et al. Modified structural characteristics and enhanced electrochemical properties of oxygen-deficient Li2MnO3-δ obtained from pristine Li2MnO3[J]. Journal of Power Sources, 2018,374:134-141.
|
[7] |
Xin D, Xu Y L, Xiong L L , et al. Sodium substitution for partial lithium to significantly enhance thecycling stability of Li2MnO3 cathode material[J]. Journal of Power Sources, 2013,243(6):78-87.
doi: 10.1016/j.jpowsour.2013.05.155
URL
|
[8] |
House R A, Jin L Y, Maitra U , et al. Lithium manganese oxyfluoride as a new cathode material exhibiting oxygen redox[J]. Energy & Environmental Science, 2018,11(4):926-932.
|
[9] |
Zhao Y J, Xia M H, Hu X S , et al. Effects of Sn doping on the structural and electrochemical properties of Li1.2Ni0.2-Mn0.8O2 Li-rich cathode materials[J]. Electrochimica Acta, 2015,174:1167-1174.
doi: 10.1016/j.electacta.2015.05.068
URL
|
[10] |
Wang J L, Wu H L, Cui Y H , et al. A new class of ternary compound for lithium-ion battery: from composite to solid solution[J]. ACS Applied Materials & Interfaces, 2018,10(6):5125-5132.
doi: 10.1021/acsami.7b15494
URL
pmid: 29384646
|
[11] |
Chen H, Hu Q Y, Peng W J , et al. New insight into the modification of Li-rich cathode material by stannum treatment[J]. Ceramics International, 2017,43(14):10919-10926.
|
[12] |
Qiao Q Q, Qin L, Li G R , et al. Sn-stabilized Li-rich layered Li (Li0.17Ni0.25Mn0.58) O2 oxide as a cathode for advanced lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015,3(34):17627-17634.
|
[13] |
Chen Y H, Jiao Q L, Liang W , et al. Synjournal and characterization of Li1.05Co1/3Ni1/3Mn1/3O1.95X0.05(X = Cl, Br) cathode materials for lithium-ion battery[J]. Comptes Rendus Chimie, 2013,16(9):845-849.
|
[14] |
Kubota K, Kaneko T, Hirayama M , et al. Direct synjournal of oxygen-deficient Li2MnO3-x for high capacity lithium battery electrodes[J]. Journal of Power Sources, 2012,216:249-255.
doi: 10.1016/j.jpowsour.2012.05.061
URL
|
[15] |
Yan H J, Li B, Zhen Y , et al. First-principles study: Tuning the redox behavior of lithium-rich layered oxides by chlorine doping[J]. Journal of Physical Chemistry C, 2017,121(13):7155-7163.
|
[16] |
Wu S( 吴莎 ). Study on modification of Li2MnO3 cathode material for lithium ion battery by doping[D]. Hubei: Wu-han University of Technology, 2015.
|
[17] |
Klein A, Axmann P, Yada C , et al. Improving the cycling stability of Li2MnO3 by surface treatment[J]. Journal of Power Sources, 2015,288:302-307.
doi: 10.1016/j.jpowsour.2015.03.145
URL
|
[18] |
Amalraj S F, Burlaka L, Julien C M , et al. Phase transitions in Li2MnO3 electrodes at various states-of-charge[J]. Electrochimica Acta, 2014,123(123):395-404.
doi: 10.1016/j.electacta.2014.01.051
URL
|
[19] |
Amalraj S F, Markovsky B, Sharon D , et al. Study of the electrochemical behavior of the “inactive” Li2MnO3[J]. Electrochimica Acta, 2012,78:32-39.
doi: 10.1016/j.electacta.2012.05.144
URL
|