电化学(中英文) ›› 2020, Vol. 26 ›› Issue (1): 136-147. doi: 10.13208/j.electrochem.190114
陆杭烁1, 何小波2,3, 银凤翔1,2,3,*(), 李国儒2
收稿日期:
2019-01-14
修回日期:
2019-04-01
出版日期:
2020-02-28
发布日期:
2019-03-29
通讯作者:
银凤翔
E-mail:yinfx@cczu.edu.cn
基金资助:
Hang-shuo LU1, Xiao-bo HE2,3, Feng-xiang YIN1,2,3,*(), Guo-ru LI2
Received:
2019-01-14
Revised:
2019-04-01
Published:
2020-02-28
Online:
2019-03-29
Contact:
Feng-xiang YIN
E-mail:yinfx@cczu.edu.cn
摘要:
以钛网为基底,采用电沉积法制备了Ni-Fe/Ti析氧电极,然后将得到的Ni-Fe/Ti电极通过固相硫化制备了Ni-Fe-S/Ti析氢电极. 分别考察了电沉积液中Ni2+/Fe3+离子摩尔浓度比和硫脲加入量对Ni-Fe/Ti和Ni-Fe-S/Ti结构和电化学性能的影响. 结果表明,随着电沉积液中Ni2+含量的增加,Ni-Fe/Ti电极析氧性能先增强后减弱,Ni9Fe1/Ti电极具有最好的析氧性能;随着硫脲加入量的增加,Ni-Fe-S/Ti电极析氢性能呈现先增强后减弱的趋势,Ni9Fe1S0.25/Ti电极具有最好的析氢性能. 在50 mA·cm-2下,Ni9Fe1/Ti电极的析氧过电位为280 mV,Ni9Fe1S0.25/Ti电极的析氢过电位为269 mV,且均具有很好的稳定性. 将Ni9Fe1/Ti与Ni9Fe1S0.25/Ti分别作为阳极和阴极进行电催化全水分解,电流密度达到50 mA·cm-2所需电势仅1.69 V,表现出很好的全水解催化性能.
中图分类号:
陆杭烁, 何小波, 银凤翔, 李国儒. Ni-Fe/Ti和Ni-Fe-S/Ti的制备及其电催化水分解性能[J]. 电化学(中英文), 2020, 26(1): 136-147.
Hang-shuo LU, Xiao-bo HE, Feng-xiang YIN, Guo-ru LI. Preparations of Nickel-Iron Hydroxide/Sulfide and Their Electrocatalytic Performances for Overall Water Splitting[J]. Journal of Electrochemistry, 2020, 26(1): 136-147.
表1
样品列表
Sample | Molar ratio of Ni2+/Fe3+ | Deposition potential/ V(vs. Ag/AgCl) | Deposition time/min | Thiourea/g | Temperature of sulfuration/°C | Loading/ (mg·cm-2) |
---|---|---|---|---|---|---|
Ni0Fe10/Ti | 0:10 | -1 | 20 | — | — | 0.2 |
Ni3Fe7/Ti | 3:7 | -1 | 20 | — | — | 2.3 |
Ni6Fe4/Ti | 6:4 | -1 | 20 | — | — | 3.0 |
Ni9Fe1/Ti | 9:1 | -1 | 20 | — | — | 7.4 |
Ni10Fe0/Ti | 10:0 | -1 | 20 | — | — | 7.0 |
Ni9Fe1S0.1/Ti | 9:1 | -1 | 20 | 0.10 | 200 | 8.2 |
Ni9Fe1S0.25/Ti | 9:1 | -1 | 20 | 0.25 | 200 | 7.9 |
Ni9Fe1S0.5/Ti | 9:1 | -1 | 20 | 0.50 | 200 | 8.1 |
表3
不同催化电极的析氧性能
Electrode | Substrate | Current density/ (mA·cm-2) | η/mV | Tafel slope/(mV·dec-1) | KOH/ ( mol·L-1) | Ref. |
---|---|---|---|---|---|---|
Ni9Fe1/Ti | Ti mesh | 50 | 280 | 30 | 0.1 | This work |
NiFe LDH | Ni foam | 10 | 240 | — | 1 | [9] |
NiCo-LDH | Ni foam | 10 | 420 | 113 | 0.1 | [10] |
Cu@NiFe LDH | Cu foam | 100 | 280 | 27.8 | 1 | [11] |
Ni(OH)2 | Ni foam | 50 | 330 | 150 | 1 | [31] |
Ni70Fe30(H) | Glassy carbon | 10 | 292 | 30.4 | 0.1 | [30] |
CoNi(OH)x | Cu foil | 10 | 280 | 77 | 1 | [32] |
NiMo HNRs | Ti mesh | 10 | 310 | 47 | 1 | [33] |
IrOx/C | Glassy carbon | 10 | 326 | 41.7 | 0.1 | [30] |
表5
不同催化电极的析氢性能
Electrode | Substrate | Current density/ (mA·cm-2) | η/mV | Tafel slope/(mV·dec-1) | KOH/ ( mol·L-1) | Ref. |
---|---|---|---|---|---|---|
Ni9Fe1S0.25/Ti | Ti mesh | 50 | 269 | 126 | 0.1 | This work |
NiFeS | Ni foam | 10 | 180 | 53 | 1 | [16] |
NiFeP | Ni foam | 10 | 87 | 48 | 1 | [34] |
Fe0.1-NiS2NA | Ti mesh | 50 | ~300 | 108 | 1 | [31] |
NiMoS4 | Ti mesh | 50 | 263 | 97 | 0.1 | [35] |
NiCo2S4 nanowire | Ni foam | 10 | 210 | 58.9 | 1 | [36] |
Ni5P4 | Ni foil | 10 | 150 | 53 | 1 | [37] |
NiSe | Ni foam | 10 | 96 | 120 | 1 | [38] |
Pt/C | Ti mesh | 50 | ~180 | 58 | 0.1 | [35] |
表8
不同催化电极的全水解性能
Electrode | Substrate | Current density/(mA·cm-2) | Voltage/V | KOH/ ( mol·L-1) | Ref. |
---|---|---|---|---|---|
Ni9Fe1/Ti(+)||Ni9FeS0.25/Ti(-) | Ti mesh | 50 | 1.69 | 0.1 | This work |
IrO2(+)||Pt(-) | Cu foam | 50 | ~1.70 | 1 | [11] |
NiFe LDH | Ni foam | 10 | 1.70 | 1 | [21] |
Co2VO4(+)||Co/VN(-) | Glassy carbon | 10 | 1.65 | 1 | [40] |
NiFe LDH@NiCoP | Ni foam | 10 | 1.57 | 1 | [22] |
Ni3S2 | Ni foam | 10 | 1.76 | 1 | [23] |
NiCo3-xS4/Ni3S4 | Ni foam | 10 | 1.53 | 1 | [24] |
100 | 1.8 |
[1] |
Holladay J D, Hu J, King D L , et al. An overview of hydrogen production technologies[J]. Catalysis Today, 2009,139(4):244-260.
doi: 10.1016/j.cattod.2008.08.039 URL |
[2] | Li Y( 李阳), Luo Z Y( 罗兆艳), Ge J J( 葛君杰 ), et al. Recent advances in non-noble metal nanomaterials for oxygen evolution electrocatalysis[J]. Journal of Electrochemistry( 电化学), 2018,24(6):572-588. |
[3] | Xiao G( 肖钢 ). Fuel cell technology[M]. Bejing: Publishing House of Electronics Industry( 电子工业出版社), 2009. |
[4] | Lin Z D( 吝子东), Bai S( 白松), Zhang X H( 张晓辉 ). Development prospect of water electrolysis hydrogen production technology[J]. Chemical Defence on Ships( 舰船防化), 2014,2:48-54. |
[5] |
Zhang B, Zheng X L, Voznyy O , et al. Homogeneously dispersed multimetal oxygen-evolving catalysts[J]. Science, 2016,352(3):333-337.
doi: 10.1016/j.amjms.2016.05.033 URL pmid: 27650243 |
[6] |
Han A L, Jin S, Chen H L , et al. A robust hydrogen evolution catalyst based on crystalline nickel phosphide nanoflakes on three-dimensional graphene/nickel foam: High performance for electrocatalytic hydrogen production from pH 0-14[J]. Journal of Materials Chemistry A, 2015,3(5):1941-1946.
doi: 10.1039/C4TA06071G URL |
[7] |
Bae S H, Kim J E, Randriamahazaka H , et al. Seamlessly conductive 3D nanoarchitecture of core-shell Ni-Co nanowire network for highly efficient oxygen evolution[J]. Advanced Energy Materials, 2017,7(1):1601492.
doi: 10.1002/aenm.v7.1 URL |
[8] | Zhang X( 张晓), He X B( 何小波), Li X( 李响 ), et al. Recent progress in the electrocatalysts based on Fe, Co and Ni for electrocatalytic hydrogen evolution reaction[J]. The Journal of New Industrialization( 新型工业化), 2016,6(10):1-9. |
[9] |
Jiang N, You B, Sheng M L , et al. Bifunctionality and mechanism of electrodeposited nickel-phosphorous films for efficient overall water splitting[J]. ChemCatChem, 2016,8(1):106-112.
doi: 10.1002/cctc.201501150 URL |
[10] |
Jiang J, Zhang A L, Li L L , et al. Nickel-cobalt layered double hydroxide nanosheets as high-performance electrocatalyst for oxygen evolution reaction[J]. Journal of Power Sources, 2015,278:445-451.
doi: 10.1016/j.jpowsour.2014.12.085 URL |
[11] | Yu L, Zhou H Q, Sun J Y , et al. Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting[J]. Energy & Environmental Science, 2017,10(8):1820-1827. |
[12] |
Song F, Hu X L . Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis[J]. Nature Communications, 2014,5:4477-4485.
doi: 10.1038/ncomms5477 URL pmid: 25030209 |
[13] | Zhao D D( 赵丹丹), Zhang Nan( 张楠), Bu L Z( 卜令正 ) , et al. Recent advances in non-noble metal nanomaterials for oxygen evolution electrocatalysis[J]. Journal of Electrochemistry( 电化学), 2018,24(5):455-465. |
[14] | Ovshinsky S R, Fetcenko M A, Venkatesan S , et al. Compositionally and structurally disordered multiphase nickel hydroxide positive electrode for alkaline rechargeable electrochemical cells[J]. Journal of Power Sources, 1994,70(2):294-294. |
[15] |
Trotochaud L, Young S L, Ranney J K , et al. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation[J]. Journal of the American Chemical Society, 2014,136(18):6744-6753.
doi: 10.1021/ja502379c URL |
[16] |
Ganesan P, Sivanantham A, Shanmugam S . Inexpensive electrochemical synjournal of nickel iron sulphides on nickel foam: Super active and ultra-durable electrocatalysts for alkaline electrolyte membrane water electrolysis[J]. Journal of Materials Chemistry A, 2016,4(42):16394-16402.
doi: 10.1039/C6TA04499A URL |
[17] |
Faber M S, Lukowski M A, Ding Q , et al. Earth-abundant metal pyrites (FeS2, CoS2, NiS2, and their alloys) for highly efficient hydrogen evolution and polysulfide reduction electrocatalysis[J]. Journal of Physical Chemistry C, 2014,118(37):21347-21356.
doi: 10.1021/jp506288w URL |
[18] |
Kibsgaard J, Chen Z, Reinecke B N , et al. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis[J]. Nature Materials, 2012,11(11):963-969.
doi: 10.1038/NMAT3439 URL |
[19] |
Long X, Li G X, Wang Z L , et al. Metallic iron-nickel sulfide ultrathin nanosheets as a highly active electrocatalyst for hydrogen evolution reaction in acidic media[J]. Journalof the American Chemical Society, 2015,137(37):11900-11903.
doi: 10.1021/jacs.5b07728 URL pmid: 26338434 |
[20] |
Wang D Y, Gong M, Chou H L , et al. Highly active and stable hybrid catalyst of cobalt-doped FeS2 nanosheets-carbon nanotubes for hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2015,137(4):1587-1592.
doi: 10.1021/ja511572q URL pmid: 25588180 |
[21] |
Luo J S, Im J H, Mayer M T , et al. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts[J]. Science, 2014,345(6204):1593-1596.
doi: 10.1126/science.1258307 URL pmid: 25258076 |
[22] | Zhang H J, Li X P, H?hnel A , et al. Bifunctional heterostructure assembly of NiFe LDH nanosheets on NiCoP nanowires for highly efficient and stable overall water splitting[J]. Advanced Functional Materials, 2018,14:1706847. |
[23] |
Feng L L, Yu G T, Wu Y Y , et al. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting[J]. Journal of the American Chemical Society, 2015,137(44):14023-14026.
doi: 10.1021/jacs.5b08186 URL pmid: 26352297 |
[24] |
Wu Y Y, Liu Y P, Li G D , et al. Efficient electrocatalysis of overall water splitting by ultrasmall NixCo3-xS4 coupled Ni3S2 nanosheet arrays[J]. Nano Energy, 2017,35:161-170.
doi: 10.1016/j.nanoen.2017.03.024 URL |
[25] | Liu J( 刘佳), Ge X B( 葛性波 ). Recent advances in Fe based oxygen evolution catalysts via electrodeposition method[J]. Applied Chemical Industry( 应用化工), 2017,46(8):1603-1607. |
[26] |
Yarger M S, Steinmiller E M, Choi K S . Electrochemical synjournal of Zn-Al layered double hydroxide (LDH) films[J]. Inorganic Chemistry, 2008,47(13):5859-5865.
doi: 10.1021/ic800193j URL pmid: 18533629 |
[27] |
Pu Z H, Liu Q, Tang C , et al. Ni2P nanoparticle films supported on a Ti plate as an efficient hydrogen evolution cathode[J]. Nanoscale, 2014,6(19):11031-11034.
doi: 10.1039/c4nr03037k URL |
[28] | Wang X H( 王新红 ). Study on the thermal analysis of thiourea[J]. Applied Chemical Industry( 应用化工), 2008,37(6):691-693. |
[29] |
Lin H L, Liu N, Shi Z P , et al. Cobalt-doping in molybdenum-carbide nanowires toward efficient electrocatalytic hydrogen evolution[J]. Advanced Functional Materials, 2016,26(31):5590-5598.
doi: 10.1002/adfm.v26.31 URL |
[30] |
Lee E, Park A H, Park H U , et al. Facile sonochemical synjournal of amorphous NiFe-(oxy)hydroxide nanoparticles as superior electrocatalysts for oxygen evolution reaction[J]. Ultrasonics Sonochemistry, 2017,40(Pt A):552-557.
doi: 10.1016/j.ultsonch.2017.07.048 URL pmid: 28946457 |
[31] |
Yang N, Tang C, Wang K Y , et al. Iron-doped nickel disulfide nanoarray: A highly efficient and stable electrocatalyst for water splitting[J]. Nano Research, 2016,9(11):3346-3354.
doi: 10.1007/s12274-016-1211-x URL |
[32] |
Liu X, Cui S S, Sun Z J , et al. Self-supported copper oxide electrocatalyst for water oxidation at low overpotential and confirmation of its robustness by Cu K-Edge X-ray absorption spectroscopy[J]. Journal of Physical Chemistry C, 2016,120(2):831-840.
doi: 10.1021/acs.jpcc.5b09818 URL |
[33] |
Tian J Q, Cheng N Y, Liu Q , et al. Self-supported NiMo hollow nanorod array: An efficient 3D bifunctional catalytic electrode for overall water splitting[J]. Journal of Materials Chemistry A, 2015,3(40):20056-20059.
doi: 10.1039/C5TA04723D URL |
[34] |
Xing J, Li H, Cheng M M , et al. Electro-synjournal of 3D porous hierarchical Ni-Fe phosphate film/Ni foam as a high-efficiency bifunctional electrocatalyst for overall water splitting[J]. Journal of Materials Chemistry A, 2016,4(36):13866-13873.
doi: 10.1039/C6TA05952J URL |
[35] |
Wang W Y, Yang L, Qu F L , et al. A self-supported NiMoS4 nanoarray as an efficient 3D cathode for the alkaline hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2017,5(32):16585-16589.
doi: 10.1039/C7TA05521H URL |
[36] |
Sivanantham A, Ganesan P, Shanmugam S . Hierarchical NiCo2S4 nanowire arrays supported on ni foam: An efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions[J]. Advanced Functional Materials, 2016,26(26):4661-4672.
doi: 10.1002/adfm.v26.26 URL |
[37] |
Ledendecker M, Krick Calderón S, Papp C , et al. The synjournal of nanostructured Ni5P4 films and their use as a non-noble bifunctional electrocatalyst for full water splitting[J]. Angewandte Chemie International Edition, 2015,54(42):12361-12365.
doi: 10.1002/anie.201502438 URL pmid: 26129698 |
[38] |
Tang C, Cheng N Y, Pu Z H , et al. NiSe nanowire film supported on Nickel foam: An efficient and stable 3D bifunctional electrode for full water splitting[J]. Angewandte Chemie International Edition, 2015,54(32):9351-9355.
doi: 10.1002/anie.201503407 URL pmid: 26136347 |
[39] |
Ling F, Jiang Z Q, Xu H T , et al. Crystal-plane engineering of NiCo2O4 electrocatalysts towards efficient overall water splitting[J]. Journal of Catalysis, 2018,357:238-246.
doi: 10.1016/j.jcat.2017.11.017 URL |
[40] |
Xiao Y L, Tian C G, Tian M , et al. Cobalt-vanadium bimetal-based nanoplates for efficient overall water splitting[J]. Science China Materials, 61(1):80-90.
doi: 10.1007/s40843-017-9113-1 URL |
[1] | 秦祥, 李仲秋, 潘建斌, 李剑, 王康, 夏兴华. 双极纳米电极阵列实现单个铂纳米颗粒上氢气析出反应的电致化学发光成像[J]. 电化学(中英文), 2021, 27(2): 157-167. |
[2] | 秦雪苹, 朱尚乾, 张露露, 孙书会, 邵敏华. 酸性和碱性溶液中金属氮碳材料氧还原和氢析出反应的理论研究[J]. 电化学(中英文), 2021, 27(2): 185-194. |
[3] | Maduraiveeran Govindhan, Brennan Mao, 陈爱成. 用于电化学水氧化的铁、镍、钴金属及其二元金属纳米颗粒比较研究[J]. 电化学(中英文), 2017, 23(2): 159-169. |
[4] | 卢世刚, 李群, 刘庆国, 路春, 党兵, 杨汉西. 氢气在贮氢合金电极上析出反应机理的研究[J]. 电化学(中英文), 1998, 4(3): 265-272. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||