[1] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.
[2] Aricò A S, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices[J]. Nature Materials, 2005, 4(5): 366-377.
[3] Matsuo Y, Fumita K, Fukutsuka T, et al. Butyrolactone derivatives as electrolyte additives for lithium-ion batteries with graphite anodes[J]. Journal of Power Sources, 2003, 119(S1): 373-377.
[4] Kasavajjula U, Wang C, Appleby A J. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells[J]. Journal of Power Sources, 2007, 163(2): 1003-1039.
[5] Chen Y, Du N, Zhang H, et al. Facile synthesis of uniform MWCNT@Si nanocomposites as high-performance anode materials for lithium-ion batteries[J]. Journal of Alloys & Compounds, 2015, 622: 966-972.
[6] Michan A L, Leskes M, Grey C P. Voltage dependent solid electrolyte interphase formation in silicon electrodes: Monitoring the formation of organic decomposition products[J]. Chemistry of Materials, 2016, 28(1): 385-398.
[7] Zhang W J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196(1): 13-24.
[8] Yoo J K, Kim J, Choi M J, et al. Extremely high yield conversion from low-cost sand to high-capacity Si electrodes for Li-ion batteries[J]. Advanced Energy Materials, 2015, 4(16): 385-398.
[9] Li C L(李纯莉), Yang G(杨广), Zhang P(张平), et al. Electrochemical properties of graphene/porous nano-silicon anode[J]. Journal of Electrochemistry(电化学), 2015, 21(6): 572-576.
[10] Cho J H, Li X L, Picraux S T. The effect of metal silicide formation on silicon nanowire-based lithium-ion battery anode capacity[J]. Journal of Power Sources, 2012, 205: 467-473.
[11] Fu Y P(傅焰鹏), Chen H X (陈慧鑫), Yang Y(杨勇). Silicon nanowires as anode materials for lithium ion batteries[J]. Journal of Electrochemistry(电化学), 2009, 15(1): 56-61.
[12] Song H C, Wang H X, Lin Z X, et al. Highly connected silicon-copper alloy mixture nanotubes as high-rate and durable anode materials for lithium-ion batteries[J]. Advanced Functional Materials, 2016, 26(4): 524-531.
[13] Valvo M. Silicon-based nanocomposite for advanced thin film anodes in lithium-ion batteries[J]. Journal of Materials Chemistry, 2011, 22(4): 1556-1561.
[14] Yu J, Zhan H H, Wang Y H, et al. Graphite microspheres decorated with Si particles derived from waste solid of organosilane industry as high capacity anodes for Li-ion batteries[J]. Journal of Power Sources, 2013, 228(11): 112-119.
[15] Zhang Y, Zhang X G, Zhang H L, et al. Composite anode material of silicon/graphite/carbon nanotubes for Li-ion batteries[J]. Electrochimica Acta, 2006, 51(23): 4994-5000.
[16] Wang B, Li X L, Zhang X F, et al. Adaptable silicon-carbon nanocables sandwiched between reduced graphene oxide sheets as lithium ion battery anodes[J]. ACS Nano, 2013, 7(2): 1437-1445.
[17] Obrovac M N, Christensen L. Structural changes in silicon anodes during lithium insertion/extraction[J]. Electrochemical and Solid State Letters, 2004, 7(5): A93-A96. |