[1] Liu C, Li F, Ma L P, et al. Advanced materials for energy storage[J]. Advanced Materials, 2010, 22(8): E28-E62.
[2] Wen L, Li F, Luo H Z, et al. Graphene for flexible lithium-ion batteries: Development and prospects[M]. Nanocarbons for Advanced Energy Storage, Wiley, 2015, DOI: 10.1002/9783527680054.ch5.
[3] Geim A K, Novoselov K S. The rise of graphene[L]. Nature Materials, 2007, 6(3): 183-191.
[4] Choi N S, Chen Z H, Freunberger S A, et al. Challenges facing lithium batteries and electrical double-layer capacitors[J]. Angewandte Chemie-International Edition, 2012, 51(40): 9994-10024.
[5] Wen L(闻雷), Song R S(宋仁升), Shi Y(石颖), et al. Lithium storage characteristics and possible applications of graphene materials[J]. Acta Chimica Sinica(化学学报), 2014, 72(3): 333-344.
[6] Dahn J R, Zheng T, Liu Y H, et al. Mechanisms for lithium insertion in carbonaceous materials[J]. Science, 1995, 270(5236): 590-593.
[7] de las Casas C, Li W Z. A review of application of carbon nanotubes for lithium ion battery anode material[J]. Journal of Power Sources, 2012, 208: 74-85.
[8] Pan D Y, Wang S, Zhao B, et al. Li storage properties of disordered graphene nanosheets[J]. Chemistry of Materials, 2009, 21(14): 3136-3142.
[9] Wu Y, Wang J P, Jiang K L, et al. Applications of carbon nanotubes in high performance lithium ion batteries[J]. Frontiers of Physics, 2014, 9(3): 351-369.
[10] Spahr M E, Goers D, Leone A, et al. Development of carbon conductive additives for advanced lithium ion batteries[J]. Journal of Power Sources, 2011, 196(7): 3404-3413.
[11] Wang Q, Su F Y, Tang Z Y, et al. Synergetic effect of conductive additives on the performance of high power lithium ion batteries[J]. New Carbon Materials, 2012, 27(6): 427-432.
[12] Liu C, Cheng H M, Carbon nanotubes: Controlled growth and application[J]. Materials Today, 2013, 16(1/2): 19-28.
[13] Endo M, Kim Y A, Hayashi T, et al. Vapor-grown carbon fibers (VGCFs)—Basic properties and their battery applications[J]. Carbon, 2001, 39(9): 1287-1297.
[14] Zhang Q, Huang J Q, Qian W Z, et al. The road for nanomaterials industry: A review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage[J]. Small, 2013, 9(8): 1237-1265.
[15] Sun Y Q, Wu Q O, Shi G Q, Graphene based new energy materials[J]. Energy & Environmental Science, 2011, 4(4): 1113-1132.
[16] Wu Z S, Zhou G M, Yin L C, et al. Graphene/metal oxide composite electrode materials for energy storage[J]. Nano Energy, 2012, 1(1): 107-131.
[17] Kim S W, Seo D H, Ma X, et al. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries[J]. Advanced Energy Materials, 2012, 2(7): 710-721.
[18] Wang L P, Yu L, Wang X, et al. Recent developments in electrode materials for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(18): 9353-9378.
[19] Slater M D, Kim D, Lee E, et al. Sodium-ion batteries[J]. Advanced Functional Materials, 2013, 23(8): 947-958.
[20] Thomas P, Ghanbaja J, Billaud D. Electrochemical insertion of sodium in pitch-based carbon fibres in comparison with graphite in NaClO4-ethylene carbonate electrolyte[J]. Electrochimica Acta, 1999, 45(3): 423-430.
[21] Cao Y, Xiao L, Sushko M L, et al. Sodium ion insertion in hollow carbon nanowires for battery applications[J]. Nano Letters, 2012, 12(7): 3783-3787.
[22] Alcantara R, Lavela P, Ortiz G F, et al. Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries[J]. Electrochemical and Solid-State Letters, 2005, 8(4): A222-A225.
[23] Li Y M, Xu S Y, Wu X Y, et al. Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(1): 71-77.
[24] Alcantara R, Jimenez-Mateos J M, Lavela P, et al. Carbon black: A promising electrode material for sodium-ion batteries[J]. Electrochemistry Communications, 2001, 3(11): 639-642.
[25] Wenzel S, Hara T, Janek J, et al. Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies[J]. Energy & Environmental Science, 2011, 4(9): 3342-3345.
[26] Shukla A K, Banerjee A, Ravikumar M K, et al. Electrochemical capacitors: Technical challenges and prognosis for future markets[J]. Electrochimica Acta, 2012. 84: 165-173.
[27] Simon P, Gogotsi . Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11): 845-854.
[28] Wang G P, Zhang L, Zhang J J. A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews, 2012, 41(2): 797-828.
[29] Zhai Y P, Dou Y Q, Zhao D Y, et al. Carbon materials for chemical capacitive energy storage[J]. Advanced Materials, 2011, 23(42): 4828-4850.
[30] Wang D W, Li F, Liu M, et al. 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage[J]. Angewandte Chemie-International Edition, 2008, 47(2): 373-376.
[31] Simon P, Gogotsi Y. Capacitive energy storage in nanostructured carbon-electrolyte systems[J]. Accounts of Chemical Research, 2013, 46(5): 1094-1103.
[32] Lota G, Fic K, Frackowiak E. Carbon nanotubes and their composites in electrochemical applications[J]. Energy & Environmental Science, 2011, 4(5): 1592-1605.
[33] Li X, Wei B Q. Supercapacitors based on nanostructured carbon[J]. Nano Energy, 2013, 2(2): 159-173.
[34] Revo S L, Budzulyak I M, Rachiy B I, et al. Electrode material for supercapacitors based on nanostructured carbon[J]. Surface Engineering and Applied Electrochemistry, 2013, 49(1): 68-72.
[35] Mahmood N, Zhang C Z, Yin H, et al. Graphene-based nanocomposites for energy storage and conversion in lithium batteries, supercapacitors and fuel cells[J]. Journal of Materials Chemistry A, 2014, 2(1): 15-32.
[36] Zhu Y W, Murali S, Stoller M D, et al. Carbon-based supercapacitors produced by activation of graphene[J]. Science, 2011, 332(6037): 1537-1541.
[37] Huang Y, Liang J J, Chen Y S. An overview of the applications of graphene-based materials in supercapacitors[J]. Small, 2012, 8(12): 1805-1834.
[38] Wu D C, Xu F, Sun B, et al. Design and preparation of porous polymers[J]. Chemical Reviews, 2012, 112(7): 3959-4015.
[39] Zhang C, Lv W, Tao Y, et al. Towards superior volumetric performance: Design and preparation of novel carbon materials for energy storage[J]. Energy & Environmental Science, 2015, 8(5): 1390-1403.
[40] Weng Z, Li F, Wang D W, et al. Controlled electrochemical charge injection to maximize the energy density of supercapacitors[J]. Angewandte Chemie-International Edition, 2013, 52(13): 3722-3725.
[41] Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2012, 11(1): 19-29.
[42] Manthiram A, Fu Y Z, Chung S H, et al. Rechargeable lithium-sulfur batteries[J]. Chemical Reviews, 2014, 114(23): 11751-11787.
[43] Wang D W, Zeng Q C, Zhou G M, et al. Carbon-sulfur composites for Li-S batteries: Status and prospects[J]. Journal of Materials Chemistry A, 2013, 1(33): 9382-9394.
[44] Li Z, Huang Y M, Yuan L X, et al. Status and prospects in sulfur-carbon composites as cathode materials for rechargeable lithium-sulfur batteries[J]. Carbon, 2015, 92: 41-63.
[45] Liang J, Sun Z H, Li F, et al. Carbon materials for Li-S batteries: Functional evolution and performance improvement[J]. Energy Storage Materials, 2015, DOI: 10.1016/j.ensm.2015.09.007.
[46] Zhang Q, Cheng X B, Huang J Q, et al. Review of carbon materials for advanced lithium-sulfur batteries[J]. New Carbon Materials, 2014, 29(4): 241-264.
[47] Zhou G M, Pei S F, Li L, et al. A Graphene-pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries[J]. Advanced Materials, 2014, 26(4): 625-631.
[48] Jia Q, Huang Q, Wei F. Multifunctional interlayer/separator system for high-stable lithium-sulfur batteries: Progress and prospects[J]. Energy storage materials, 2015: DOI: 10.1016/j.ensm.2015.09.008.
[49] Zheng G, Zhang Q, Cha J J, et al. Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries[J]. Nano Letters, 2013, 13(3): 1265-1270.
[50] Ji X, Lee K T, Nazar L F, A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials, 2009, 8(6): 500-506.
[51] Jeong G, Kim Y U, Kim H, et al. Prospective materials and applications for Li secondary batteries[J]. Energy & Environmental Science, 2011, 4(6): 1986-2002.
[52] Zhou G M, Li F, Cheng H M. Progress in flexible lithium batteries and future prospects[J]. Energy & Environmental Science, 2014. 7(4): 1307-1338.
[53]. Wen L(闻雷), Chen J(陈静), Luo H Z(罗洪泽), et al. Graphene for flexible lithium-ion batteries: Applications and prospects[J]. Chinese Science Bulletin(科学通报), 2015, 60(7): 630-644.
[54] Zhou G M, Li L, Ma C Q, et al. A graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries[J]. Nano Energy, 2015, 11: 356-365.
[55] Liang J, Zhou R, Hulicova-Jurcakova D, et al. Carbon materials and their energy conversion and storage applications[M]//Luque R, Balu A M, Eds. Producing Fuels and Fine Chemicals from Biomass Using Nanomaterials. London: CRC Press, 2013: 59-94.
[56] Liang J, Qiao S Z, Lu G Q, et al. Chapter 18—Carbon-based catalyst support in fuel cell applications[M]//Tascon J M D, Ed. Novel Carbon Adsorbents. Amsterdam: Elsevier, 2012: 549-581.
[57] Li H Q, Wang Y G, Wang C X, et al. A competitive candidate material for aqueous supercapacitors: High surface-area graphite[J]. Journal of Power Sources, 2008, 185(2): 1557-1562.
[58] Hung C C, Lim P Y, Chen J R, et al. Corrosion of carbon support for PEM fuel cells by electrochemical quartz crystal microbalance[J]. Journal of Power Sources, 2011, 196(1): 140-146.
[59] Coloma F, Sepulvedaescribano A, Rodriguezreinoso F. Heat-treated carbon-blacks as supports for platinum catalysts[J]. Journal of Catalysis, 1995, 154(2): 299-305.
[60] Yu X Y, Ye S Y. Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC: Part I. Physico-chemical and electronic interaction between Pt and carbon support, and activity enhancement of Pt/C catalyst[J]. Journal of Power Sources, 2007, 172(1): 133-144.
[61] Tran T D, Langer S H. Graphite pre-treatment for deposition of platinum catalysts[J]. Electrochimica Acta, 1993, 38(11): 1551-1554.
[62] Gong K, Du F, Xia Z, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science, 2009, 323(5915): 760-764.
[63] Liang J, Du X, Gibson C, et al. N-doped graphene natively grown on hierarchical ordered porous carbon for enhanced oxygen reduction[J]. Advanced Materials, 2013, 25(43): 6226-6231.
[64] Yang Z, Yao Z, Li G F, et al. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction[J]. ACS Nano, 2012, 6(1): 205-211.
[65] Liu Z W, Peng F, Wang H J, et al. Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium[J]. Angewandte Chemie International Edition, 2011, 50(14): 3257-3261.
[66] Yao Z, Nie H G, Yang Z, et al. Catalyst-free synthesis of iodine-doped graphenevia a facile thermal annealing process and its use for electrocatalytic oxygen reduction in an alkaline medium[J]. Chemical Communications, 2012, 48(7): 1027-1029.
[67] Bo X G, Guo L P. Ordered mesoporous boron-doped carbons as metal-free electrocatalysts for the oxygen reduction reaction in alkaline solution[J]. Physical Chemistry Chemical Physics, 2013, 15(7): 2459-2465.
[68] Zheng Y, Jiao Y, Ge L, et al. Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis[J]. Angewandte Chemie International Edition, 2013, 52(11): 3110-3116.
[69] Liang J, Jiao Y, Jaroniec M, et al. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance[J]. Angewandte Chemie International Edition, 2012, 51(46): 11496-11500.
[70] Liang J, Zhou R F, Chen X M, et al. Fe-N Decorated hybrids of CNTs grown on hierarchically porous carbon for high-performance oxygen reduction[J]. Advanced Materials, 2014, 26(35): 6074-6079.
[71] Liang J, Zheng Y, Chen J, et al. Facile oxygen reduction on a three-dimensionally ordered macroporous graphitic C3N4/carbon composite electrocatalyst[J]. Angewandte Chemie International Edition, 2012, 51(16): 3892-3896.
[72] Zheng Y, Jiao Y, Zhu Y H, et al. Hydrogen evolution by a metal-free electrocatalyst[J]. Nature Communications, 2014, 5: Article No. 3783.
[73] Wei G J, Fan X Z, Liu J G, et al. A review of the electrochemical activity of carbon Materials in vanadium redox flow batteries[J]. New Carbon Materials, 2014, 29(4): 272-279.
[74] Wang J J, Li Y L, Sun X L, Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium-air batteries[J]. Nano Energy, 2013, 2(4): 443-467.
[75] Yabuuchi N, Kubota K, Dahbi M, et al. Research development on sodium-ion batteries[J]. Chemical Reviews, 2014, 114(23): 11636-11682.
[76] Ellis B L, Nazar L F. Sodium and sodium-ion energy storage batteries[J]. Current Opinion in Solid State & Materials Science, 2012, 16(4): 168-177.
[77] Lin M C, Gong M, Lu B G, et al. An ultrafast rechargeable aluminium-ion battery[J]. Nature, 2015, 520(7547): 325-328. |