电化学(中英文) ›› 2014, Vol. 20 ›› Issue (6): 506-514. doi: 10.13208/j.electrochem.140435
• 生物电分析化学近期研究专辑(南京大学 夏兴华教授主编) • 上一篇 下一篇
周镇宇,许林茹,苏彬*
收稿日期:
2014-05-28
修回日期:
2014-07-09
出版日期:
2014-12-28
发布日期:
2014-07-14
通讯作者:
苏彬
E-mail:subin@zju.edu.cn
基金资助:
国家自然科学基金项目(No. 21222504,No. 2133501)和浙江省杰出青年基金项目(No. R14B050003)资助
ZHOU Zhen-yu, XU Lin-ru, SU Bin*
Received:
2014-05-28
Revised:
2014-07-09
Published:
2014-12-28
Online:
2014-07-14
Contact:
SU Bin
E-mail:subin@zju.edu.cn
摘要: 电化学发光成像技术作为一种新的生化分析手段,具有设备简单、反应可控、多信息化和可视化等优点. 目前,该技术已被用于便携式、微型化、高通量的电化学发光传感器中,并取得了一系列创新性成果. 本文结合作者课题组的研究进展,简要介绍了电化学发光成像技术在阵列传感分析和潜在指纹检测中的应用,并尝试着展望了今后的发展趋势.
中图分类号:
周镇宇,许林茹,苏彬*. 电化学发光成像技术及其在阵列传感分析和潜在指纹成像分析中的应用[J]. 电化学(中英文), 2014, 20(6): 506-514.
ZHOU Zhen-yu, XU Lin-ru, SU Bin*. Electrochemiluminescence Imaging Focusing: Array Analysis and Visualization of Latent Fingerprints[J]. Journal of Electrochemistry, 2014, 20(6): 506-514.
[1] Knight A W. A review of recent trends in analytical applications of electrogenerated chemiluminescence[J]. TrAC Trends in Analytical Chemistry, 1999, 18(1): 47-62.[2] Richter M M. Electrochemiluminescence (ECL)[J]. Chemical Reviews, 2004, 104(6), 3003-3036.[3] Zhou H, Kasai S, Matsue T. Imaging localized horseradish peroxidase on a glass surface with scanning electrochemical/chemiluminescence microscopy[J]. Analytical Biochemistry, 2001, 290(1): 83-88.[4] Lei R, Stratmann L, Schafer D, et al. Imaging biocatalytic activity of enzyme-polymer spots by means of combined scanning electrochemical microscopy/electrogenerated chemiluminescence[J]. Analytical Chemistry, 2009, 81(12): 5070-5074.[5] Hu L Z, Xu G B. Applications and trends in electrochemiluminescence[J]. Chemical Society Reviews, 2010, 39(8): 3275-3304.[6] Maus R G, Wightman R M. Microscopic imaging with electrogenerated chemiluminescence[J]. Analytical Chemistry, 2001, 73(16): 3993-3998.[7] Zu Y B, Ding Z F, Zhou J F, et al. Scanning optical microscopy with an electrogenerated chemiluminescent light source at a nanometer tip[J]. Analytical Chemistry, 2001, 73(10): 2153-2156.[8] Xu L R, Li Y, Wu S Z, et al. Imaging latent fingerprints by electrochemiluminescence[J]. Angewandte Chemie International Edition, 2012, 124(32): 8192-8196.[9] Sojic N, Sentic M, Milutinovic M, et al. Mapping the electrogenerated chemiluminescence reactivity in space: Mechanistic insight into model systems used in immunoassays[J]. Chemical Science, 2014, 5: 2568-2572.[10] Engstrom R C, Johnson K W, DesJarlais S. Characterization of electrode heterogeneity with electrogenerated chemiluminescence[J]. Analytical Chemistry, 1987, 59(4): 670-673.[11] Shultz L L, Stoyanoff J S, Nieman T A. Temporal and spatial analysis of electrogenerated Ru(bpy)33+ chemiluminescent reactions in flowing streams[J]. Analytical Chemistry, 1996, 68(2): 349-354.[12] Chovin A, Garrigue P, Sojic N. Electrochemiluminescent detection of hydrogen peroxide with an imaging sensor array[J]. Electrochimica acta, 2004, 49(22): 3751-3757.[13] Marquette C A, Degiuli A, Blum L J. Electrochemiluminescent biosensors array for the concomitant detection of choline, glucose, glutamate, lactate, lysine and urate[J]. Biosensors and Bioelectronics, 2003, 19(5): 433-439.[14] Deiss F, LaFratta C N, Symer M, et al. Multiplexed sandwich immunoassays using electrochemiluminescence imaging resolved at the single bead level[J]. Journal of the American Chemical Society, 2009, 131(17): 6088-6089.[15] Sardesai N P, Barron J C, Rusling J F. Carbon nanotube microwell array for sensitive electrochemiluminescent detection of cancer biomarker proteins[J]. Analytical Chemistry, 2011, 83(17): 6698-6703.[16] Hvastkovs E G, So M, Krishnan S, et al. Electrochemiluminescent arrays for cytochrome P450-activated genotoxicity screening. DNA damage from benzo a pyrene metabolites[J]. Analytical Chemistry, 2007, 79(5): 1897-1906.[17] Delaney J L, Hogan C F, Tian J, et al. Electrogenerated chemiluminescence detection in paper-based microfluidic sensors[J]. Analytical Chemistry, 2011, 83(4): 1300-1306.[18] Hao N, Xiong M, Zhang J D, et al. Portable thermo-powered high-throughput visual electrochemiluminescence sensor[J]. Analytical Chemistry, 2013, 85(24): 11715-11719.[19] Wu M S, Yuan D J, Xu J J, et al. Electrochemiluminescence on bipolar electrodes for visual bioanalysis[J]. Chemical Science, 2013, 4(3): 1182-1188.[20] Lin X M, Zheng L Y, Gao G M, et al. Electrochemiluminescence imaging-based high-throughput screening platform for electrocatalysts used in fuel cells[J]. Analytical Chemistry, 2012, 84(18): 7700-7707.[21] Qi H L, Li M, Dong M M, et al. Electrogenerated chemiluminescence peptide-based biosensor for the determination of prostate-specific antigen based on target-induced cleavage of peptide[J]. Analytical Chemistry, 2014, 86(3): 1372-1379.[22] Wightman R M, Curtis C L, Flowers P A, et al. Imaging microelectrodes with high-frequency electrogenerated chemiluminescence[J]. The Journal of Physical Chemistry B, 1998, 102(49): 9991-9996.[23] Chang Y L, Palacios R E, Fan F R F, et al. Electrogenerated chemiluminescence of single conjugated polymer nanoparticles[J]. Journal of the American Chemical Society, 2008, 130(28): 8906-8907.[24] Miao W J. Electrogenerated chemiluminescence and its biorelated applications[J]. Chemical Reviews, 2008, 108(7): 2506-2553.[25] Miao W J, Choi J P, Bard A J. Electrogenerated chemiluminescence 69: The tris(2,2'-bipyridine)ruthenium(II), (Ru(bpy)32+/tri-n-propylamine (TPrA) system revisited—A new route involving TPrA? + cation radicals[J]. Journal of the American Chemical Society, 2002, 124(48): 14478-14485.[26] Liu X Q, Shi L H, Niu W X, et al. Environmentally friendly and highly sensitive ruthenium (ii) tris(2,2'-bipyridyl) electrochemiluminescent system using 2-(dibutylamino) ethanol as Co-reactant[J]. Angewandte Chemie International Edition, 2007, 119(3): 425-428.[27] Chang M M, Saji T, Bard A J. Electrogenerated chemiluminescence. 30. Electrochemical oxidation of oxalate ion in the presence of luminescers in acetonitrile solutions[J]. Journal of the American Chemical Society, 1977, 99(16): 5399-5403.[28] White H S, Bard A J. Electrogenerated chemiluminescence. 41. Electrogenerated chemiluminescence and chemiluminescence of the Ru(2,2'-bpy)32+-S2O82- system in acetonitrile-water solutions[J]. Journal of the American Chemical Society, 1982, 104(25): 6891-6895.[29] F?hnrich K A, Pravda M, Guilbault G G. Recent applications of electrogenerated chemiluminescence in chemical analysis[J]. Talanta, 2001, 54(4): 531-559.[30] Marquette C A, Blum L J. Conducting elastomer surface texturing: A path to electrode spotting: Application to the biochip production[J]. Biosensors and Bioelectronics, 2004, 20(2): 197-203.[31] Corgier B P, Marquette C A, Blum L J. Screen-printed electrode microarray for electrochemiluminescent measurements[J]. Analytica chimica acta, 2005, 538(1): 1-7.[32] Sardesai N P, Kadimisetty K, Faria R, et al. A microfluidic electrochemiluminescent device for detecting cancer biomarker proteins[J]. Analytical and Bioanalytical Chemistry, 2013, 405(11): 3831-3838.[33] Venkatanarayanan A, Crowley K, Lestini E, et al. High sensitivity carbon nanotube based electrochemiluminescence sensor array[J]. Biosensors and Bioelectronics, 2012, 31(1): 233-239.[34] Krishnan S, Hvastkovs E G, Bajrami B, et al. Genotoxicity screening for N-nitroso compounds. Electrochemical and electrochemiluminescent detection of human enzyme-generated DNA damage from N-nitrosopyrrolidine[J]. Chemical Communications, 2007, (17): 1713-1715.[35] Pan S M, Sardesai N P, Liu H Y, et al. Assessing DNA damage from enzyme-oxidized single-walled carbon nanotubes[J]. Toxicology Research, 2013, 2(6): 375-378.[36] Krishnan S, Hvastkovs E G, Bajrami B, et al. Human cyt P450 mediated metabolic toxicity of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) evaluated using electrochemiluminescent arrays[J]. Molecular Biosystems, 2009, 5(2): 163-169.[37] Krishnan S, Hvastkovs E G, Bajrami B, et al. Synergistic metabolic toxicity screening using microsome/DNA electrochemiluminescent arrays and nanoreactors[J]. Analytical Chemistry, 2008, 80(14): 5279-5285.[38] Wasalathanthri D P, Malla S, Bist I, et al. High-throughput metabolic genotoxicity screening with a fluidic microwell chip and electrochemiluminescence[J]. Lab on a Chip, 2013, 13(23): 4554-4562.[39] Marquette C, Blum L J. Self-containing reactant biochips for the electrochemiluminescent determination of glucose, lactate and choline[J]. Sensors and Actuators B: Chemical, 2003, 90(1): 112-117.[40] Zhou Z, Xu L, Wu S, et al. A novel biosensor array with a wheel-like pattern for glucose, lactate and choline based on electrochemiluminescence imaging. Analyst, 2014, 139(19): 4934-4939.[41] Mavre? F O, Anand R K, Laws D R, et al. Bipolar electrodes: A useful tool for concentration, separation, and detection of analytes in microelectrochemical systems[J]. Analytical Chemistry, 2010, 82(21): 8766-8774.[42] Chow K F, Mavre F, Crooks R M. Wireless electrochemical DNA microarray sensor[J]. Journal of the American Chemical Society, 2008, 130(24): 7544-7545.[43] Chow K F, Mavre F, Crooks J A, et al. A Large-scale, wireless electrochemical bipolar electrode microarray[J]. Journal of the American Chemical Society, 2009, 131(24): 8364-8365.[44] Chang B Y, Mavre F, Chow K F, et al. Snapshot voltammetry using a triangular bipolar microelectrode[J]. Analytical Chemistry, 2010, 82(12): 5317-5322.[45] Fosdick S E, Crooks J A, Chang B Y, et al. Two-dimensional bipolar electrochemistry[J]. Journal of the American Chemical Society, 2010, 132(27): 9226-9227.[46] Sentic M, Loget G, Manojlovic D, et al. Light-emitting electrochemical "swimmers"[J]. Angewandte Chemie International Edition, 2012, 51(45): 11284-11288.[47] Bouffier L, Zigah D, Adam C, et al. Lighting up redox propulsion with luminol electrogenerated chemiluminescence[J]. ChemElectroChem, 2014, 1(1): 95-98.[48] Chang B Y, Crooks J A, Chow K F, et al. Design and operation of microelectrochemical gates and integrated circuits[J]. Journal of the American Chemical Society, 2010, 132(43): 15404-15409.[49] Chang B Y, Chow K F, Crooks J A, et al. Two-channel microelectrochemical bipolar electrode sensor array[J]. Analyst, 2012, 137(12): 2827-2833.[50] Wu S Z, Zhou Z Y, Xu L R, et al. Integrating bipolar electrochemistry and electrochemiluminescence imaging with microdroplets for chemical analysis[J]. Biosensors and Bioelectronics, 2014, 53: 148-153.[51] Zhan W, Alvarez J, Crooks R M. Electrochemical sensing in microfluidic systems using electrogenerated chemiluminescence as a photonic reporter of redox reactions[J]. Journal of the American Chemical Society, 2002, 124(44): 13265-13270.[52] Xu L R, Li Y, He Y Y, et al. Non-destructive enhancement of latent fingerprints on stainless steel surfaces by electrochemiluminescence[J]. Analyst, 2013, 138(8): 2357-2362.[53] Li Y, Xu L R, He Y Y, et al. Enhancing the visualization of latent fingerprints by electrochemiluminescence of rubrene[J]. Electrochemistry Communications, 2013, 33, 92-95.[54] Xu L R(许林茹), He Y Y(何亚芸), Su B(苏彬). Development of latent fingerprints based on electrochemiluminescence imaging of luminol[J]. Chemistry(化学通报), 2014, 77(1): 86-89.[55] Xu L, Zhou Z, Zhang C, et al. Electrochemiluminescence Imaging of Latent Fingermarks through the Immunodetection of Secretions in the Human Perspiration. Chemical Communications, 2014, 50(65): 9097-9100. |
[1] | 李文俊,郑杰允,谷林,李泓*. 锂电池原位与非原位表征技术研究[J]. 电化学(中英文), 2015, 21(2): 99-114. |
[2] | 谢勇,钟贵明,龚正良*,杨勇*. Li3Fe2(PO4)3/C正极材料的电化学性能及其反应机理研究[J]. 电化学(中英文), 2015, 21(2): 123-129. |
[3] | 周罗增,徐群杰*,汤卫平,靳雪,袁小磊. 锂离子电池富锂锰基正极材料的研究进展[J]. 电化学(中英文), 2015, 21(2): 138-144. |
[4] | 蔡济钧,崔王君*,李冰,余洋洋,赵金保*. CoAl2O4包覆LiNi1/3Co1/3Mn1/3O2的电化学性能[J]. 电化学(中英文), 2015, 21(2): 145-151. |
[5] | 郝亮,申来法,王婕,朱佳佳,赵笑晨,张校刚*. 碳纳米管/五氧化二钒空心球的制备及其电化学性能研究[J]. 电化学(中英文), 2015, 21(2): 152-156. |
[6] | M. RostomAli*, Andrew P. Abbott, Karl S. Ryder. 采用AlCl3-Emic-MgCl2室温离子液体电沉积制备铝-镁合金[J]. 电化学(中英文), 2015, 21(2): 172-180. |
[7] | 杨太来,董文燕,杨慧敏,张力,梁镇海*. 二元析氧催化剂CoxCr1-xO3/2的制备及性能研究[J]. 电化学(中英文), 2015, 21(2): 187-192. |
[8] | 吴梅笙,徐静娟*,陈洪渊. 双极电极-电致化学发光技术在生物分析中的应用[J]. 电化学(中英文), 2015, 21(1): 1-7. |
[9] | 严乙铭,毛兰群*. 全酶型乙醇/氧气生物燃料电池的构筑及性能研究[J]. 电化学(中英文), 2015, 21(1): 8-12. |
[10] | 王海军,肖丽娟,何颖,蒋欣亚,袁亚利,卓颖,柴雅琴,袁若*. 共反应试剂增强电致化学发光信号生物传感器[J]. 电化学(中英文), 2015, 21(1): 13-21. |
[11] | 杨妍,喻鹏,张小华*,陈金华*. “金标银染”放大技术的羟基自由基灵敏检测[J]. 电化学(中英文), 2015, 21(1): 22-28. |
[12] | 徐璇,卢菊生,刘松琴*. 细胞色素P450酶电化学生物传感器的构建及其药物代谢应用[J]. 电化学(中英文), 2015, 21(1): 45-52. |
[13] | 肖静婧,徐慧颖,徐莉,刘宝红*. 铁酞菁/氮掺杂石墨烯复合物的电化学传感研究[J]. 电化学(中英文), 2015, 21(1): 53-57. |
[14] | 侯瑞青,蒋平丽,董士刚,林昌健*. 镁钙合金表面贻贝类吸附蛋白膜的NaIO4氧化处理及抗腐蚀性能[J]. 电化学(中英文), 2015, 21(1): 58-65. |
[15] | 林丽清,赵成飞,蒋周倩,翁少煌,谢晓兰,林新华*. 基于DNA聚合酶I的新型电化学传感器及其胰腺癌K-ras基因点突变检测[J]. 电化学(中英文), 2015, 21(1): 72-77. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||