[1] Han Q(韩庆), Wei X J(魏绪均), Liu K R(刘奎仁). Development of nickel alloys as HER cathodes for water electrolysis[J]. Transactions of Nonferrous Metals Society of China(中国有色金属学报), 2001, 11(1): 158-161.[2] Li S J(李淑娟), Ju H(鞠鹤), Cai T X(蔡天晓), et al. Research on preparation and application performance ofactivated cathodes with nickel-based metal oxides[J]. Chlor-Alkali Industry(氯碱工业), 2010, 461(11): 13-17.[3] Kotz E R, Stucki S. Ruthenium dioxide as a hydrogen-evolving cathode[J]. Journal of Applied Electrochemistry, 1987, 17(6): 1190-1197.[4] Rochefort D, Dabo P, Guay D. et al. XPS investigations of thermally prepared RuO2 electrodes in reductive conditions[J]. Electrochimica Acta, 2003, 48(28): 4245-4252.[5] Sun Z R(孙真荣), Chen K N(陈康宁). Investigation of RuNi oxide active cathode[J]. Journal of East China Normal University (Natural Science) (华东师范大学学报(自然科学版)), 1995, (4): 65-71.[6] Bianchi I, Guerrini E, Trasatti S. Electrocatalytic activation of Ni for H2 evolution by spontaneous deposition of Ru[J]. Chemical Physics, 2005, 319(1/3): 192-195.[7] Tavares A C, Trasatti S. Trasatti.Ni+RuO2 co-deposited electrodes for hydrogen evolution[J]. Electrochimica Acta, 2000, 45(25/26): 4195-4202.[8] Vázquez-Gómeza L, Cattarin S, Guerrierol P. Preparation and electrochemical characterization of Ni + RuO2 composite cathodes of large effective area[J]. Electrochimica Acta, 2007, 52(28): 8055-8063.[9] Profetia L P R, Profetia D, Olivib P. Pt-RuO2 electrodes prepared by thermal decomposition of polymeric precursors as catalysts for direct methanol fuel cell applications[J]. International Association for Hydrogen Energy, 2009, 34(6): 2747-2757.[10] Wang Z(王振), Shao Y Q(邵艳群), Wang X(王欣), et al. Effects of heat treatment on microstructure and property of Ru-containing titanium cathode [J]. Heat Treatment Technology and Equipment(热处理技术与装备), 2010, 31(1): 39-42.[11] Ailton J, Terezo, Ernesto C, et al. Preparation and characterisation of Ti/RuO2 anodes obtained by sol-gel and conventional routes[J]. Materials Letters, 2002, 53(4-5): 339-345.[12] Antozzi A L, Bargioni C J, Calderara A, et al. Cathode for elecrolytic processes: US Patent, 2008043766-A2[P]. 2008.[13] Antozzi A L, Bargioni C J, Calderara A, et al. Cathode for elecrolytic processes: US Patent, 20090194411-A1[P]. 2009.[14] Wang W(王雯), Li X M(黎学明), Yang W J(杨文静), et al. Preparation and characterization of Ni/PdO/RuO2 composite active cathode for chlor-alkali industry[J].Chinese Journal of Inorganic Chemistry(无机化学学报), 2010, 26(9): 1633-1638. [15] Da Silva L A, Alves V A, Da Silva M A P, et al. Electrochemical impedance, SEM, EDX and voltammetric study of oxygen evolution on Ir+Ti+Pt ternary-oxide electrodes in alkaline solution[J]. Electrochimca Acta, 1996, 41(7/8): 1279-1285.[16] Comninellis C H, Vercesi G P. Problems in DSA? coating deposition by thermal decomposition[J]. Journal of Applied Electrochemistry, 1991, 21(2): 136-42.[17] Gao X Y, Wang S Y, Li Jing, et al. Study of structure and optical properties of silver oxide films by ellipsometry, XRD and XPS methods[J]. Thin Solid Films, 2004,455-456(1): 438–442. [18] Gar B, Hoflund-Zoltan F, Hazos. Surface characterization study of Ag, AgO, and Ag2O using x-ray photoelectron spectroscopy and electron energy-loss spectroscopy[J]. Physical Review B, 2000, 62(16): 11126-11133.[19] Rochefort D, Dabo P, Guay D, et al. XPS investigations of thermally prepared RuO2 electrodes in reductive conditions[J]. Electrochimica Acta, 2003, 48(28): 4245-4252.[20] Park K W, Choi J H, Kwon B K, et al. Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation[J]. The Journal of Physical Chemistry B, 2002, 106(8): 1869-1877. |