欢迎访问《电化学(中英文)》期刊官方网站,今天是

电化学(中英文) ›› 2001, Vol. 7 ›› Issue (1): 48-51. 

• 研究论文 • 上一篇    下一篇

金、铜金属纳米棒或纳米线的AFM和SERS的研究(英文)

汤儆,姚建林,薛宽宏,吴德印,林龙刚,蒋玉雄,任斌,徐昕,毛秉伟,田中群   

  1. 厦门大学固体表面物理化学国家重点实验室!化学系福建厦门361005,厦门大学固体表面物理化学国家重点实验室!化学系福建厦门361005,南京师范大学化学系!江苏南京,210097,厦门大学固体表面物理化学国家重点实验室!化学系福建厦门361005,厦门大学固体表面物理化学国家重点实验室!
  • 收稿日期:2001-02-28 修回日期:2001-02-28 出版日期:2001-02-28 发布日期:2001-02-28

Raman and AFM Characterization of Au and Cu Nanorod and Nanowire Arrays

TANG Jing, YAO Jian lin, XUE Kuan hong 1, WU De yin, LIN Long gang, JIANG Yu xiong, REN Bin, XU Xin, MAO Bing wei,TIAN Zhong qun *   

  1. (State Key Lab.for Phys.Chem.of Solid Surf.,Xiamen Univ.,Xiamen 361005, China; 1 Dept. of Chem., Nanjing Norma
  • Received:2001-02-28 Revised:2001-02-28 Published:2001-02-28 Online:2001-02-28

摘要: 通过电化学氧化法制备具有不同孔径氧化铝模板 ,利用交流电镀的方法在模板中沉积金属 ,再用酸溶解模板可以得到相应尺度的金属纳米线或纳米棒的阵列 .本文利用原子力显微镜和表面增强拉曼技术分别表征了金和铜两种金属纳米线阵列 .研究结果表明 ,作为探针分子的硫氰(SCN )在金属纳米线上的碳氮三键的振动频率随纳米线直径的增大而蓝移 .这一现象可能是因为尺寸效应对纳米线的费米能级造成影响 ,使不同直径的金属纳米线电子结构存在微小的差别 .

关键词: 氧化铝模板, 纳米线, 表面增强拉曼光谱, 硫氰

Abstract: Recently metal nanowires (nanorods) have aroused tremendous interest because of their novel properties and potential applications in wide fields [1] . Many two?dimensional nanowire arrays of semiconductors and metals with different diameter and length have been made by using template synthesis method. To characterize the novel optical, electronic and magnetic properties of these materials, UV?Vis and fluorescence spectroscopies are two of the most wildly used methods [2, 3] . Raman spectroscopy has, however, only been applied to the characterizing of semiconductor nanowires and carbon nanotubes [4,5] . Important and meaningful information can be obtained in these cases, as some forbidden Raman modes in the bulk materials become Raman active [4, 5] . Raman spectroscopy is apparently not suitable to study metal nanowires since it can only detect the mechanical vibration bands located in the extremely low frequency region. Consequently, an alternative way has to be established to study the metal nano?wires (?rods) with Raman spectroscopy. In the present work, we have taken the probe molecule strategy and used surface?enhanced Raman spectroscopy (SERS) to characterize metal nanorods (nanowires). It is well known that for a molecule which interacts strongly with a surface, its vibrational band frequency and shape are very sensitive to the electronic property, the chemical environment and the morphology of the surface. Hence Raman spectroscopy has long been used to analyze the atomic structures and the electronic properties of the surface indirectly through assessing carefully the spectral changes of the adsorbate known as a probe molecule. On that account, it is of great interest to diagnose the electronic structures of the metal nanorods with the vibrational spectrum of a probe molecule. We have examined the changes in the electronic properties of the nanorods through analyzing the spectral changes of the probe molecule. For this purpose a typical SERS molecule of SCN - was employed. The nanorod arrays of Au and Cu with different diameter from about 15 nm to 130 nm were fabricated electrochemically by means of the anodic aluminum oxide (AAO) templates. To partially expose metal nanowires with various lengths, the AAO template was chemically etched off to a certain extent by an aqueous solution of phosphoric acid or sodium hydroxide as shown in Fig. 1. After the template was etched off, the nanowires can be characterized by TEM, see Fig. 2. The tapping mode AFM image was obtained on a scanning probe microscope (Nanoscope IIIa). SERS measurements were performed on a confocal microprobe Raman system (LabRam I).

中图分类号: