[1] |
Cao D X, Chao J D, Sun L M , et al. Catalytic behavior of Co3O4 in electroreduction of H2O2[J]. Journal of Power Sources, 2008,179(1):87-91.
doi: 10.1016/j.jpowsour.2007.12.076
URL
|
[2] |
Cai Z( 蔡庄), Wang G L( 王贵领), Song C Y( 宋聪颖 ), et al. Preparation of a binder free electrode of NiAg supported on graphite modified A4 paper and its electrochemical performance for H2O2 reduction[J]. Chemical Journal of Chinese Universities( 高等学校化学学报), 2018,39(5):1041-1047.
|
[3] |
Song C Y( 宋聪颖), Sun X( 孙逊), Ye K( 叶克 ), et al. Electrocatalytic activity of MnO2 supported on reduced graphene oxide modified Ni foam for H2O2 reduction[J]. Acta Chimica Sinica( 化学学报), 2017,75(10):1003-1009.
doi: 10.6023/A17070298
URL
|
[4] |
Cheng K( 程魁), Yang F( 杨帆), Yan P( 闫鹏 ) , et al. Preparation of Co3O4 nanosheet supported on Ni foam and its catalytic performance for H2O2 electroreduction[J]. Chemical Journal of Chinese Universities( 高等学校化学学报), 2014,35(1):110-114.
doi: 10.7503/cjcu20130504
URL
|
[5] |
Yang W Q, Yang S H, Sun W , et al. Nanostructured silver catalyzed nickel foam cathode for an Al- H2O2 fuel cell[J]. Journal of Power Sources, 2006,160(2):1420-1424.
doi: 10.1016/j.jpowsour.2006.02.015
URL
|
[6] |
Tian Y M( 田永梅), Lei T( 雷婷), Wang G L( 王贵领 ), et al. Al-H2O2 semi-fuel cell using Ni foam supported NiCo2O4 nanowire arrays as cathode[J]. Chemical Journal of Chinese Universities( 高等学校化学学报), 2011,32(10):2382-2386.
|
[7] |
Miley G H, Luo N, Mather J , et al. Direct NaBH4/H2O2 fuel cells[J]. Journal of Power Sources, 2007,165(2):509-516.
doi: 10.1016/j.jpowsour.2006.10.062
URL
|
[8] |
Wang G, Ye K, Shao J Q , et al. Porous Ni2P nanoflower supported on nickel foam as an efficient three-dimensional electrode for urea electro-oxidation in alkaline medium[J]. International Journal of Hydrogen Energy, 2018,43(19):9316-9325.
doi: 10.1016/j.ijhydene.2018.03.221
URL
|
[9] |
Yan P( 闫鹏), Zhang D M( 张栋铭), Cheng K( 程魁 ) , et al. Preparation of Pd-Ag/C@TiO2 core/shell nanorods as catalysts for electrooxidation of NaBH4[J]. Chemical Journal of Chinese Universities( 高等学校化学学报), 2015,36(9):1801-1806.
doi: 10.7503/cjcu20150009
URL
|
[10] |
Zhang D M, Wang G L, Cheng K , et al. Enhancement of electrocatalytic performance of hydrogen storage alloys by multi-walled carbon nanotubes for sodium borohydride oxidation[J]. Journal of Power Sources, 2014,245:482-486.
doi: 10.1016/j.jpowsour.2013.06.161
URL
|
[11] |
Wang X, Ye K, Sun C , et al. Simple fabrication of pineapple root-like palladium-gold catalysts as the high-efficiency cathode in direct peroxide-peroxide fuel cells[J]. Journal of Colloid & Interface Science, 2017,498:239-247.
doi: 10.1016/j.jcis.2017.03.071
URL
pmid: 28342307
|
[12] |
Sanli A E, Aytac A . Response to Disselkamp: direct peroxide/peroxide fuel cell as a novel type fuel celll[J]. International Journal of Hydrogen Energy, 2011,36(1):869-875.
doi: 10.1016/j.ijhydene.2010.09.038
URL
|
[13] |
Yang F, Cheng K, Mo Y H , et al. Direct peroxide-peroxide fuel cell - Part 1: The anode and cathode catalyst of carbon fiber cloth supported dendritic Pd[J]. Journal of Power Sources, 2012,217:562-568.
doi: 10.1016/j.jpowsour.2012.07.019
URL
|
[14] |
Yamazaki S, Siroma Z, Senoh H , et al. A fuel cell with selective electrocatalysts using hydrogen peroxide as both an electron acceptor and a fuel[J]. Journal of Power Sources, 2008,178(1):20-25.
doi: 10.1016/j.jpowsour.2007.12.013
URL
|
[15] |
Sanli A E . A possible future fuel cell: the peroxide/peroxide fuel cell[J]. International Journal of Energy Research, 2013,37(12):1488-1497.
doi: 10.1088/1752-7155/6/1/019001
URL
pmid: 22366644
|
[16] |
Wang X, Ye K, Zhang H Y , et al. Enhanced performance of direct peroxide-peroxide fuel cells by employing three-dimensional Ni and Co@TiC nanoarrays anodes[J]. International Journal of Energy Research, 2017,42(36):15044-15053.
|
[17] |
Yamada Y, Yoneda M, Fukuzumi S . A robust onecompartment fuel cell with a polynuclear cyanide complex as a cathode for utilizing H2O2 as a sustainable fuel at ambient conditions[J]. Chemistry - A European Journal, 2013,19(35):11733-11741.
doi: 10.1002/chem.201300783
URL
pmid: 23868499
|
[18] |
Ye K, Guo F, Gao Y Y , et al. Three-dimensional carbon- and binder-free nickel nanowire arrays as a high-performance and low-cost anode for direct hydrogen peroxide fuel cell[J]. Journal of Power Sources, 2015,300:147-156.
|
[19] |
Yamada Y, Yoshida S, Honda T , et al. Protonated iron-phthalocyanine complex used for cathode material of a hydrogen peroxide fuel cell operated under acidic conditions[J]. Energy & Environmental Science, 2011,4(8):2822-28225.
|
[20] |
Shaegh SAM, Nguyen NT, Ehteshami SMM , et al. A membraneless hydrogen peroxide fuel cell using Prussian blue as cathode material[J]. Energy & Environmental Science, 2012,5(8):8225-8228.
|
[21] |
Meng G, Yang Q, Wu X C , et al. Hierarchical mesoporous NiO nanoarrays with ultrahigh capacitance for aqueous hybrid supercapacitor[J]. Nano Energy, 2016,30:831-839.
|
[22] |
Wang G L( 王贵领), Liu J C( 刘进程), Sun K N( 孙克宁 ), et al. Electrocatalytic activities of Au2MmNi3.2Al0.2Mn0.6-Co1.00 for borohydride oxidation[J]. Journal of Electrochemistry( 电化学), 2009,15(4):450-453.
|
[23] |
Zhu D W( 朱丁旺), Chen D D( 陈丹丹), Li B J( 李必进 ), et al. A study of Pd-Ir on nickel foam cathode for aluminum-hydrogen peroxide semi-fuel cells[J]. Journal of Electrochemistry( 电化学), 2008,14(3):292-297.
|