欢迎访问《电化学(中英文)》期刊官方网站,今天是

电化学(中英文)

• 研究论文 •    

磷酸电解液中铝阳极氧化过程中孔隙成核与重排动力学的控制

Ilya V. Roslyakova,b, Nikita A. Shirina,b, Dmitry M. Tsymbarenkob, Sergei N. Pavlovb, Sergey E. Kushnira,b, Nikolay V. Lyskovc, Kirill S. Napolskiia,b,*   

  1. a. 莫斯科国立罗蒙诺索夫大学材料科学学院, 莫斯科俄罗斯119991; b. 莫斯科国立罗蒙诺索夫大学化学学院莫斯科俄罗斯119991; c. 俄罗斯科学院化学物理和医学化学问题联邦研究中心化学能源功能材料系俄罗斯切尔诺戈洛夫卡142432.
  • 发布日期:2025-12-10
  • 通讯作者: Kirill S. Napolski E-mail:kirill@inorg.chem.msu.ru

Control of Pore Nucleation and Rearrangement Kinetics During Aluminium Anodizing in Phosphoric Acid Electrolyte

Ilya V. Roslyakova,b, Nikita A. Shirina,b, Dmitry M. Tsymbarenkob, Sergei N. Pavlovb, Sergey E. Kushnira,b, Nikolay V. Lyskovc, Kirill S. Napolskiia,b,*   

  1. a. Department of Materials Science, Lomonosov Moscow State University, 119991 Moscow, Russia; b. Department of Chemistry, Lomonosov Moscow State University, 19991 Moscow, Russia; c. Department of Functional Materials for Chemical Energy Sources, Federal Research Center of Problems of Chemical Physics and Medical Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia.
  • Online:2025-12-10
  • Contact: Kirill S. Napolski E-mail:kirill@inorg.chem.msu.ru

摘要: 孔间距为几百纳米的阳极氧化铝多孔膜因其与可见光和近红外光的独特相互作用以及高达 1500°C 的高热稳定性而备受关注。这些多孔膜是在弱酸中以高电压对铝进行阳极氧化制备的,这导致多孔结构形成的初始阶段动力学较慢。在此,我们提出了一种在基于弱酸(如磷酸)的电解质中加速阳极氧化铝形成的方法。使用铝箔作为基材,铝箔在不同条件下通过第一次阳极氧化预先形成图案,然后选择性溶解牺牲阳极氧化铝层。铝表面的形貌,包括表面粗糙度和金字塔尖峰的高度,在第二次阳极氧化过程中的孔成核和重排过程中起着至关重要的作用。具体而言,通过在低电压(例如 25 V 下 0.3 M 硫酸)下在强酸电解液中进行首次阳极氧化,可以使在磷酸中进行第二次阳极氧化时孔隙成核和随后达到稳态的速度加倍。因此,如果在第一次阳极氧化过程中使用强酸电解液对铝表面进行预图案化,则在磷酸中的两步阳极氧化过程中可以节省约 2 小时。

关键词: 阳极氧化铝, 动力学, 两步阳极氧化, 磷酸, 电化学预图案化

Abstract: Anodic aluminium oxide (AAO) porous films with an interpore distance of several hundred nanometers are of great interest due to their unique interaction with visible and near-infrared light and high thermal stability up to 1500 °C. These porous films are prepared by aluminium anodizing at high voltages in weak acids, leading to a slow kinetics of initial stages of porous structure formation. Here, we propose an approach to accelerate AAO formation in electrolytes based on weak acids such as phosphoric acid. Aluminium foils, pre-patterned using first anodizing under different conditions and subsequent selective dissolution of a sacrificial AAO layer, were utilized as substrates. The morphology of the aluminium surface, including surface roughness and height of pyramidal spikes, plays a crucial role in the pore nucleation and rearrangement process during the second anodizing. In particular, by first anodizing in strong acid electrolytes at low voltages (such as 0.3 M sulfuric acid at 25 V), it is possible to double the rate of pore nucleation and subsequent reach of the steady-state regime during second anodizing in phosphoric acid. As a result, about 2 hours can be saved during the two-step anodizing process in phosphoric acid if strong acid electrolyte is used for the first anodizing to pre-pattern Al surface.

Key words: anodic aluminium oxide, kinetics, two-step anodizing, phosphoric acid, electrochemical pre-patterning