[1] Lee K, Mazare A, Schmuki P. One-dimensional titanium dioxide nanomaterials: nanotubes[J]. Chemical Reviews, 2014, 114(19): 9385-9454.
[2] Zalnezhad E, Maleki E, Banihashemian S M, et al. Wettability, structural and optical properties investigation of TiO2 nanotubular arrays[J]. Materials Research Bulletin, 2016, 78: 179-185.
[3] Li Z, Cui X L, Hao H, et al. Enhanced photoelectrochemical water splitting from Si quantum dots/TiO2 nanotube arrays composite electrodes[J]. Materials Research Bulletin, 2015, 66: 9-15.
[4] Hung S C, Chen Y J. Enhanced field emission properties of tilted graphene nanoribbons on aggregated TiO2 nanotube arrays[J]. Materials Research Bulletin, 2016, 79: 115-120.
[5] Mor G K, Carvalho M A, Varghese O K, et al. A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination[J]. Journal of Materials Research, 2004, 19(2): 628-634.
[6] Macak J M, Zlamal M, Krysa J, et al. Self-organized TiO2 nanotube layers as highly efficient photocatalysts[J]. Small, 2007, 3(2): 300-304.
[7] Zhang F L, Zhao J C, Zang L, et al. Photoassisted degradation of dye pollutants in aqueous TiO2 dispersions under irradiation by visible light[J]. Journal of Molecular Catalysis A: Chemistry, 1997, 120(1/3): 173-178.
[8] Vinodgopal K, Wynkoop D E, Kamat P V. Environmental photochemistry on semiconductor surfaces: photosensitized degradation of a textile azo dye, acid orange 7, on TiO2 particles using visible light[J]. Environmental Science & Technology, 1996, 30(5): 1660-1666.
[9] Kumar S G, Devi L G. Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics[J]. Journal of Physical Chemistry A, 2011, 115(46): 13211-13241.
[10] Shao Z B, Zhu W, Li Z, et al. One-step fabrication of CdS nanoparticle-sensitized TiO2 nanotube arrays via electrodeposition[J]. Journal of Physical Chemistry C, 2012, 116(3): 2438-2442.
[11] Li D Y, Zhang Y G, Zhang Y L, et al. Fabrication of bidirectionally doped β-Bi2O3/TiO2-NTs with enhanced photocatalysis under visible light irradiation[J]. Journal of Hazardous Materials, 2013, 258: 42-49.
[12] Wang C L, Sun L, Yun H, et al. Sonoelectrochemical synthesis of highly photoelectrochemical active TiO2 nanotubes by incorporating CdS nanoparticles[J]. Nanotechnology, 2009, 20(29): 295601.
[13] Kang Q, Liu S H, Yang L X, et al. Fabrication of PbS nanoparticle-sensitized TiO2 nanotube arrays and their photoelectrochemical properties[J]. ACS Applied Materials & Interfaces, 2011, 3(3): 746-749.
[14] Wu Q, Ouyang J J, Xie K P, et al. Ultrasound-assisted synthesis and visible-light-driven photocatalytic activity of Fe-incorporated TiO2 nanotube array photocatalysts[J]. Journal of Hazardous Materials, 2012, 199: 410-417.
[15] Wang M Y, Sun L, Lin Z Q, et al. p-n Heterojunction photoelectrodes composed of Cu2O-loaded TiO2 nanotube arrays with enhanced photoelectrochemical and photoelectrocatalytic activities[J]. Energy & Environmental Science, 2013, 6(4): 1211-1220.
[16] Wang M Y, Sun L, Cai J H. et al. A facile hydrothermal deposition of ZnFe2O4 nanoparticles on TiO2 nanotube arrays for enhanced visible light photocatalytic activity[J]. Journal of Materials Chemistry A, 2013, 1(39): 12082-12087.
[17] Guo L, Yang Z, Marcus K. MoS2/TiO2 heterostructures as nonmetal plasmonic photocatalysts for highly efficient hydrogen evolution[J]. Energy & Environmental Science, 2017, 11(1): 106-114.
[18] Yun J H, Ng Y H, Huang S J, et al. Wrapping the walls of n-TiO2 nanotubes with p-CuInS2 nanoparticles using pulsed-elctrodeposition for improved heterojunction photoelectrodes[J]. Chemical Communications, 2011, 47(40): 11288-11290.
[19] Farhadi S, Amini M. M, Mahmoudi F. Phosphotungstic acid supported on aminosilica functionalized perovskite-type LaFeO3 nanoparticles: a novel recyclable and excellent visible-light photocatalyst[J]. RSC Advances, 2016, 6(105): 102984-102996.
[20] Hamadi H, Kooti M, Afshari M, et al. Magnetic nanoparticle supported polyoxometalate: An efficient and reusable catalyst for solvent-free synthesis of α-aminophosphonates[J]. Journal of Molecular Catalysis A: Chemistry, 2013, 373: 25-29.
[21] Dolbecq A, Mialane P, Keita B, et al. Polyoxometalate-based materials for efficient solar and visible light harvesting: application to the photocatalytic degradation of azo dyes[J]. Journal of Materials Chemistry, 2012, 22(47): 24509-24521.
[22] Detalle M, Remiens D. Chemical and physical characterization of LaNiO3 thin films deposited by sputtering for top and bottom electrodes in ferroelectric structure[J]. Journal of Crystal Growth, 2008, 310(15): 3596-3603.
[23] Bao D H, Yao X, Wakiya N, et al. Preparation of conductive LaNiO3 film electrodes by a simple chemical solution deposition technique for integrated ferroelectric thin film devices[J]. Journal of Physics D: Applied Physics, 2003, 36(10): 1217-1221.
[24] Delobelle P, Wang G S, Fribourg-Blanc E, et al. Indentation modulus and hardness of Pb(Zr, Ti)O3 sol-gel films deposited on Pt and LaNiO3 electrodes: An estimation of the CijD compliances[J]. Journal of the European Ceramic Society, 2007, 27(1): 223-230.
[25] Miyazaki H, Suzuki H, Naoe T, et al. Piezoelectric and fatigue properties of Pb(Zr0.53Ti0.47)O3 thin films on LaNiO3 thin film electrode[J]. Ferroelectrics, 2006, 335: 51-59.
[26] Zhao X H, Liu Y P, Hardin I. Determination of biodegradation products from sulfonated dyes by pleurotus ostreatus using capillary electrophoresis coupled with mass spectrometry[J]. Biotechnology Letters, 2005, 27: 69-72.
[27] Zhu J(朱静), Zhang N(张宁), Zhong J L(钟金莲), et al. Preparation of La-Ni mixed oxides by solid phase method and their photocatalytic activity[J]. Industrial Catalysis(工业催化), 2006, 14(3): 48-51.
[28] Tu Z M(屠振密), Li N(李宁), Hu H L(胡会利), et al. Electrodeposition nanocrystalline Technology(电沉积纳米晶材料技术)[M]. Shanghai: National Defense Industry Press(国防工业出版社), 2008.
[29] Gou G, Grinberg I, Rappe A M, et al. Lattice normal modes and electronic properties of the correlated metal LaNiO3[J]. Physical Review B: Condensed Matter Materials Physics, 2011, 84(14): 144101.
[30] Li Y Y, Yao S S, Wen W, et al. Sol-gel combustion synthesis and visible-light-driven photocatalytic property of perovskite LaNiO3[J]. Journal of Alloys and Compounds, 2011, 491(1/2): 560-564.
[31] Lai Y K, Sun L, Chen Y C, et al. Effects of the structure of TiO2 nanotube array on Ti substrate on its photocatalytic activity[J]. Journal of The Electrochemical Society, 2006, 153(7): D123-D127.
[32] Yu J G, Wang W G, Cheng B. Synthesis and enhanced photocatalytic activity of a hierarchical porous flowerlike p-n junction NiO/TiO2 photocatalyst[J]. Chemistry-An Asian Journal, 2010, 5(12): 2499-2506.
[33] Amana D, Zakia T, Mikhaila S, et al. Synthesis of a perovskite LaNiO3 nanocatalyst at a low temperature using single reverse microemulsion[J] . Catalysis Today, 2011, 164(1): 209-213.
[34] Zhang Y L, Schultz A M, Salvador P A, et al. Spatially selective visible light photocatalytic activity of TiO2/BiFeO3 heterostructures[J]. Journal of Materials Chemistry, 2011, 21(12): 4168-4174.
[35] Sarkar A, Singh A. K, Sarkar D, et al. Three-dimensional nanoarchitecture of BiFeO3 anchored TiO2 nanotube arrays for electrochemical energy storage and solar energy conversion[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(9): 2254-2263. |