欢迎访问《电化学(中英文)》期刊官方网站,今天是

电化学(中英文) ›› 2022, Vol. 28 ›› Issue (3): 2108521.  doi: 10.13208/j.electrochem.210852

所属专题: “电分析”专题文章

• 论文 • 上一篇    下一篇

单体电化学测量银纳米颗粒动态光解过程

陈梦洁, 芦思珉*(), 王浩炜, 龙亿涛*()   

  1. 南京大学化学化工学院,生命分析化学国家重点实验室,江苏 南京 210023
  • 收稿日期:2021-11-09 修回日期:2021-12-14 出版日期:2022-03-28 发布日期:2021-12-19
  • 通讯作者: 芦思珉,龙亿涛 E-mail:simin_lu@nju.edu.cn;yitaolong@nju.edu.cn

Tracking Light-Induced Fragmentation of Single Silver Nanoparticles by Single Entity Electrochemistry

Mengjie Chen, Si-Min Lu*(), Hao-Wei Wang, Yi-Tao Long*()   

  1. State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, P. R. China
  • Received:2021-11-09 Revised:2021-12-14 Published:2022-03-28 Online:2021-12-19
  • Contact: Si-Min Lu,Yi-Tao Long E-mail:simin_lu@nju.edu.cn;yitaolong@nju.edu.cn

摘要:

银纳米颗粒吸收光后会发生能量转换从而导致其晶体结构变化,分析光解过程中纳米颗粒的物理和化学性质十分重要。本文利用具有高灵敏度、高时间分辨率和高通量性质的单体电化学测量技术, 原位实时追踪单个银纳米颗粒的动态光解过程。当银纳米颗粒与限域电极界面碰撞时, 其会发生动态氧化, 从而产生高通量的法拉第电流信号。激光照射会使银纳米颗粒结构发生变化,导致瞬态电流幅值降低和碰撞频率升高。通过统计高通量计时电流信号, 实现了对银纳米颗粒在光照条件下的形貌和结构转变过程的定量评估。研究表明,单体电化学可精准获取光解过程中银纳米颗粒的结构变化信息,揭示颗粒之间物理化学性能的异质性,有助于在单颗粒尺度上对银光解动力学进行深入探究。

关键词: 光解, 单体电化学, 随机碰撞电化学, 银纳米颗粒

Abstract:

Light irradiation on silver nanoparticles (Ag NPs) could cause the energy conversion, thus, the fragmentation of Ag NPs. It is important to detect the changes of fragmented Ag NPs in the aspects of physical and chemical properties. Herein, benefiting from the high sensitivity, high temporal resolution, and high-throughput, single entity electrochemistry (SEE) method is introduced to in-situ track the dynamic laser fragmentation of single Ag NP. Compared with UV-Vis absorption spectroscopy and transmission electron microscopy (TEM), SEE methods enables an accurate in-situ measurements of light-induced fragmentation of single Ag NP. The variation in the statistic current amplitude displays the real-time changes of single Ag NP upon laser irradiation for 60 min, which indicates that the laser of 532 nm wavelength is the most effective laser for the dynamic fragmentation. By virtue of the excellent sensing performance, SEE is further applied in revealing the heterogeneity in Ag NPs’ intrinsic physicochemical properties, such as size, crystal structure, surface charge density. The study highlights the potential of SEE to advancing the real-time characterization of nanomaterials in the chemical reactions.

Key words: light-induced fragmentation, single entity electrochemistry, stochastic collision electrochemistry, single silver nanoparticles