电化学(中英文) ›› 2020, Vol. 26 ›› Issue (4): 486-494. doi: 10.13208/j.electrochem.200445
黄健航1,2, 董晓丽1, 郭昭薇1, 马元元1, 王艳荣1, 王永刚1,*()
收稿日期:
2020-05-08
修回日期:
2020-05-22
出版日期:
2020-08-28
发布日期:
2020-06-17
通讯作者:
王永刚
E-mail:ygwang@fudan.edu.cn
基金资助:
Jian-hang HUANG1,2, Xiao-li DONG1, Zhao-wei GUO1, Yuan-yuan MA1, Yan-rong WANG1, Yong-gang WANG1,*()
Received:
2020-05-08
Revised:
2020-05-22
Published:
2020-08-28
Online:
2020-06-17
Contact:
Yong-gang WANG
E-mail:ygwang@fudan.edu.cn
摘要:
由于高安全的特性,水系二次电池被认为是未来大型储能的有效解决方案之一. 然而,现有水系电池主要以含金属元素的无机化合物为电极活性材料,其在大型储能中的实际应用仍受到循环寿命、环境问题、原料成本或金属元素丰度的限制. 相较于无机电极材料,部分有机电极材料具有原料丰富、结构丰富、可持续及环境友好等优点. 此外,有机物材料分子内空间大,能够存储不同价态电荷,因此近年来被广泛关注. 本文综述了课题组近期在有机物电极方面的研究进展,内容聚焦含羰基有机物通过C=O/C-O-的可逆转化存储单价金属阳离子(Li+, Na+)、双价金属阳离子(Zn2+)、质子(H+)所涉及的电化学过程,及其在水系锂、钠离子电池、水系锌离子电池、质子电池以及分步电解水中的应用.
中图分类号:
黄健航, 董晓丽, 郭昭薇, 马元元, 王艳荣, 王永刚. 基于有机物电极的电化学能量存储与转化[J]. 电化学(中英文), 2020, 26(4): 486-494.
Jian-hang HUANG, Xiao-li DONG, Zhao-wei GUO, Yuan-yuan MA, Yan-rong WANG, Yong-gang WANG. Electrochemical Energy Storage and Conversion Based on Organic Electrodes[J]. Journal of Electrochemistry, 2020, 26(4): 486-494.
[1] |
Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: a battery of choices[J]. Science, 2011,334(6058):928-935.
URL pmid: 22096188 |
[2] |
Parker J F, Chervin C N, Pala I R, et al. Rechargeable nickel-3D zinc batteries: An energy-dense, safer alternative to lithium-ion[J]. Science, 2017,356(6336):415-418.
doi: 10.1126/science.aak9991 URL pmid: 28450638 |
[3] |
Luo J Y, Cui W J, He P, et al. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte[J]. Nature Chemistry, 2010,2(9):760-765.
doi: 10.1038/nchem.763 URL pmid: 20729897 |
[4] |
Li W, Dahn J R, Wainwright D S. Rechargeable lithium batteries with aqueous-electrolytes[J]. Science, 1994,264(5162):1115-1118.
URL pmid: 17744893 |
[5] | Goodenough J B. Electrochemical energy storage in a sustainable modern society[J]. Energy & Environmental Science, 2014,7(1):14-18. |
[6] | Zhao C L, Lu Y X, Yue J M, et al. Advanced Na metal anodes[J]. Journal of Energy Chemistry, 2018, 27(6):1584-1596. |
[7] | Huang J H, Guo Z W, Ma Y Y, et al. Recent progress of rechargeable batteries using mild aqueous electrolytes[J]. Small Methods, 2019,3(1):1800272. |
[8] | Fang G Z, Zhou J, Pan A Q, et al. Recent advances in aqueous zinc-ion batteries[J]. ACS Energy Letters, 2018,3(10):2480-2501. |
[9] |
Huang J H, Wang Z, Hou M Y, et al. Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery[J]. Nature Communications, 2018,9(1):2906.
doi: 10.1038/s41467-018-04949-4 URL pmid: 30046036 |
[10] | Lu Y, Chen J. Prospects of organic electrode materials for practical lithium batteries[J]. Nature Reviews Chemistry, 2020,4(3):127-142. |
[11] | Song Z P, Zhou H S. Towards sustainable and versatile energy storage devices: an overview of organic electrode materials[J]. Energy & Environmental Science, 2013,6(8):2280-2301. |
[12] | Liang Y L, Yao Y. Positioning organic electrode materials in the battery landscape[J]. Joule, 2018,2(9):1690-1706. |
[13] | Häupler B, Wild A, Schubert U S. Carbonyls: powerful organic materials for secondary batteries[J]. Advanced Energy Materials, 2015,5(11):1402034. |
[14] |
Peng H L, Yu Q C, Wang S P, et al. Molecular design strategies for electrochemical behavior of aromatic carbonyl compounds in organic and aqueous electrolytes[J]. Advanced Science, 2019,6(17):1900431.
URL pmid: 31508272 |
[15] |
Chen L, Li W Y, Guo Z W, et al. Aqueous lithium-ion batteries using O2 self-elimination polyimides electrodes[J]. Journal of The Electrochemical Society, 2015,162(10):A1972-A1977.
doi: 10.1149/2.0101510jes URL |
[16] |
Guo Z W, Ma Y Y, Dong X L, et al. An environmentally friendly and flexible aqueous zinc battery using an organic cathode[J]. Angewandte Chemie International Edition, 2018,57(36):11737-11741.
doi: 10.1002/anie.201807121 URL pmid: 30019809 |
[17] |
Armand M, Grugeon S, Vezin H, et al. Conjugated dicarboxylate anodes for Li-ion batteries[J]. Nature Materials, 2009,8(2):120-125.
doi: 10.1038/nmat2372 URL pmid: 19151701 |
[18] | Qin H, Song Z P, Zhan H, et al. Aqueous rechargeable alkali-ion batteries with polyimide anode[J]. Journal of Power Sources, 2014,249:367-372. |
[19] |
Liang Y L, Jing Y, Gheytani S, et al. Universal quinone electrodes for long cycle life aqueous rechargeable batteries[J]. Nature Materials, 2017,16(8):841-850.
doi: 10.1038/nmat4919 URL pmid: 28628121 |
[20] | Jiang L W, Lu Y X, Zhao C L, et al. Building aqueous K-ion batteries for energy storage[J]. Nature Energy, 2019,4(6):495-503. |
[21] |
Dong X L, Chen L, Liu J Y, et al. Environmentally-friendly aqueous Li(or Na)-ion battery with fast electrode kinetics and super-long life[J]. Science Advances, 2016,2:e1501038.
URL pmid: 26844298 |
[22] | Dong X L, Yu H C, Ma Y Y, et al. All-organic rechargeable battery with reversibility supported by “water-in-salt” electrolyte[J]. Chemistry - A European Journal, 2017,23(11):2560-2565. |
[23] |
Xie J, Zhang Q C. Recent progress in multivalent metal (Mg, Zn, Ca, and Al) and metal-ion rechargeable batteries with organic materials as promising electrodes[J]. Small, 2019,15(15):e1805061.
doi: 10.1002/smll.201805061 URL pmid: 30848095 |
[24] |
Zhao Q, Huang W W, Luo Z Q, et al. High-capacity aqueous zinc batteries using sustainable quinone electrodes[J]. Science Advances, 2018,4(3):eaao1761.
doi: 10.1126/sciadv.aao1761 URL pmid: 29511734 |
[25] | Wang Y R, Wang C X, Ni Z G, et al. Binding zinc ion by carboxyl groups from adjacent molecules toward long-life aqueous zinc-organic battery[J]. Advanced Materials, 2020,32(16):2000338. |
[26] |
Wang X F, Bommier C, Jian Z L, et al. Hydronium-ion batteries with perylenetetracarboxylic dianhydride crystals as an electrode[J]. Angewandte Chemie International Edition, 2017,56(11):2909-2913.
doi: 10.1002/anie.201700148 URL pmid: 28181730 |
[27] |
Guo Z W, Huang J H, Dong X L, et al. An organic/inorganic electrode-based hydronium-ion battery[J]. Nature Communications, 2020,11(1):959.
URL pmid: 32075978 |
[28] |
Rausch B, Symes M D, Chisholm G, et al. Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting[J]. Science, 2014,345(6202):1326-1330.
doi: 10.1126/science.1257443 URL pmid: 25214625 |
[29] |
Mallouk T E. Water electrolysis: Divide and conquer[J]. Nature Chemistry, 2013,5(5):362-363.
doi: 10.1038/nchem.1634 URL pmid: 23609082 |
[30] | Ma Y Y (马元元), Guo Z W (郭昭薇), Wang Y G (王永刚), et al. The new application of battery-electrode reaction: decoupled hydrogen production in water electrolysis[J]. Journal of Electrochemistry (电化学), 2018,24(5):41-51. |
[31] |
Symes M D, Cronin L. Decoupling hydrogen and oxygen evolution during electrolytic water splitting using an electron-coupled-proton buffer[J]. Nature Chemistry, 2013,5(5):403-409.
doi: 10.1038/nchem.1621 URL pmid: 23609091 |
[32] |
Wallace A G, Symes M D. Decoupling strategies in electrochemical water splitting and beyond[J]. Joule, 2018,2(8):1390-1395.
doi: 10.1016/j.joule.2018.06.011 URL |
[33] |
Ma Y Y, Guo Z W, Dong X L, et al. Organic proton-buffer electrode to separate hydrogen and oxygen evolution in acid water electrolysis[J]. Angewandte Chemie International Edition, 2019,58(14):4622-4626.
doi: 10.1002/anie.201814625 URL pmid: 30706609 |
[34] |
Ma Y Y, Dong X L, Wang Y G, et al. Decoupling hydrogen and oxygen production in acidic water electrolysis using a polytriphenylamine-based battery electrode[J]. Angewandte Chemie International Edition, 2018,57(11):2904-2908.
doi: 10.1002/anie.201800436 URL |
[1] | 陈品松, 胡一涛, 张信义, 沈培康. 立体构造石墨烯材料对铅酸蓄电池负极性能影响的研究[J]. 电化学(中英文), 2020, 26(6): 834-843. |
[2] | 张泽阳, 孙岚, 林昌健. RGO-TiO2纳米管阵列的制备及其光电性能[J]. 电化学(中英文), 2020, 26(6): 844-849. |
[3] | 马武威, 常启刚, 史雄芳, 童延斌, 周立, 叶邦策, 鲁建江, 赵金虎. 基于纳米孔金与离子印迹聚合物结合的新型电化学传感器用于测定砷离子(III)[J]. 电化学(中英文), 2020, 26(6): 900-910. |
[4] | 杨纳川, 王玉, 帅毅, 陈康华. 低成本硫化物固态电解质Li6-xPS5-xClx的制备与性能研究[J]. 电化学(中英文), 2020, 26(6): 885-889. |
[5] | 晋通正, 杨雨萌, 范圣慧, 卫国英, 张昭. 溶解氧及波长对光助阳极沉积CeO2薄膜的影响[J]. 电化学(中英文), 2020, 26(6): 868-875. |
[6] | 娄景媛, 尤东江, 李雪菁. 全钒氧化还原液流电池用石墨毡电极的分步氧化活化[J]. 电化学(中英文), 2020, 26(6): 876-884. |
[7] | 吴凯. 锂硫电池正极材料的制备及工艺优化[J]. 电化学(中英文), 2020, 26(6): 825-833. |
[8] | 俞成荣, 朱建国, 蒋聪盈, 谷宇晨, 周晔欣, 李卓斌, 邬荣敏, 仲政, 官万兵. 基于电-化-热耦合理论对称双阴极固体氧化物燃料电池堆的电流与温度场数值模拟[J]. 电化学(中英文), 2020, 26(6): 789-796. |
[9] | 朱畅, 陈为, 宋艳芳, 董笑, 李桂花, 魏伟, 孙予罕. 反应条件对铜催化CO2电还原的影响[J]. 电化学(中英文), 2020, 26(6): 797-807. |
[10] | 王学良, 丛媛媛, 邱晨曦, 王盛杰, 秦嘉琪, 宋玉江. 核壳结构Ru@PtRu纳米花电催化剂的制备及碱性氢析出反应性能研究[J]. 电化学(中英文), 2020, 26(6): 815-824. |
[11] | 王存, 张维江, 何腾飞, 雷博, 史尤杰, 郑耀东, 罗伟林, 蒋方明. NCA三元锂离子电池分荷电状态循环的热特性和容量衰退研究[J]. 电化学(中英文), 2020, 26(6): 777-788. |
[12] | 段明涛, 蒙延双, 张红帅. Ni3S2@碳纳米管复合材料的制备及其储钠性能[J]. 电化学(中英文), 2020, 26(6): 850-858. |
[13] | 王怡捷, 钮东方, 张新胜. 离子液体中18-冠醚-6添加剂对三价铬电沉积的影响[J]. 电化学(中英文), 2020, 26(6): 859-867. |
[14] | 沈茎, 王子明, 郑大江, 宋光铃. 钝化与过钝化状态下304不锈钢的点蚀行为研究[J]. 电化学(中英文), 2020, 26(6): 808-814. |
[15] | 邢逸飞, 李娜, 温晓芳, 韩宏彦, 崔敏, 张聪, 任聚杰, 籍雪平. 基于取代型多酸复合材料的多巴胺电化学检测[J]. 电化学(中英文), 2020, 26(6): 890-899. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||