电化学(中英文) ›› 2023, Vol. 29 ›› Issue (1): 2215002. doi: 10.13208/j.electrochem.2215002
所属专题: “电催化和燃料电池”专题文章
收稿日期:
2022-05-30
修回日期:
2022-06-13
接受日期:
2022-06-21
出版日期:
2023-01-28
发布日期:
2022-07-05
Yuan Li, Miao-Ying Chen, Bang-An Lu*(), Jia-Nan Zhang*()
Received:
2022-05-30
Revised:
2022-06-13
Accepted:
2022-06-21
Published:
2023-01-28
Online:
2022-07-05
Contact:
* Bang-An Lu, Tel: (86-371)67781590, E-mail address: 摘要:
质子交换膜燃料电池(PEMFCs)阴极氧还原反应(ORR)动力学迟缓,需要消耗大量的贵金属催化剂,这限制了其商业化应用。目前原子级分散的M-N-C(M = Fe, Co, Mn等)催化剂受到人们青睐,有望替代铂催化剂。在过去的几十年里,M-N-C催化剂取得了很大的进步,具有优异的ORR活性,而且燃料电池初始性能有希望接近传统的Pt/C催化剂。然而,这些高活性的Fe-N-C催化剂在燃料电池实际工作条件下的稳定性比较差。在这篇综述中,我们总结了在高效氧还原M-N-C催化剂方面的最近进展,主要概述了我们在限域策略和自旋调控方面的贡献。此外,我们还总结了几种提高活性的有效方法。我们还总结了近期的关于揭示M-N-C催化剂的降解机制的认识,如金属浸出、碳腐蚀、质子化和微孔淹没都会造成催化剂降解。为了改善M-N-C催化剂的寿命,我们概括了文献中的缓解策略,包括控制催化剂中S1/S2位点、使用非铁基催化剂、增强金属氮键、改善碳载体的耐腐蚀性和使用质子缓冲液等。最后,我们提出了目前原子级分散的M-N-C催化剂存在的挑战和可能的解决方案。
李渊, 陈妙迎, 卢帮安, 张佳楠. 高活性和耐久性非铂氧还原催化剂的研究进展[J]. 电化学(中英文), 2023, 29(1): 2215002.
Yuan Li, Miao-Ying Chen, Bang-An Lu, Jia-Nan Zhang. Recent Advances in Exploring Highly Active & Durable PGM-Free Oxygen Reduction Catalysts[J]. Journal of Electrochemistry, 2023, 29(1): 2215002.
[1] |
Banham D, Ye S, Pei K, Ozaki J, Kishimoto T, Imashiro Y. A review of the stability and durability of non-precious metal catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells[J]. J. Power Sources, 2015, 285: 334-348.
doi: 10.1016/j.jpowsour.2015.03.047 URL |
[2] |
Wan X, Liu X F, Shui J L. Stability of PGM-free fuel cell catalysts: degradation mechanisms and mitigation strategies[J]. Prog. Nat. Sci., 2020, 30(6): 721-731.
doi: 10.1016/j.pnsc.2020.08.010 URL |
[3] |
Chen Z Y, Niu H, Ding J, Liu H, Chen P H, Lu Y H, Lu Y R, Zuo W B, Han L, Guo Y Z, Hung S F, Zhai Y M. Unraveling the origin of sulfur-doped Fe-N-C single-atom catalyst for enhanced oxygen reduction activity: effect of iron spin-state tuning[J]. Angew. Chem. In. Ed., 2021, 60(48): 25404-25410.
doi: 10.1002/anie.v60.48 URL |
[4] |
Jiao L, Li J K, Richard L L, Sun Q, Stracensky T, Liu E R, Sougrati M T, Zhao Z P, Yang F, Zhong S C, Xu H, Mukerjee S, Huang Y, Cullen D A, Park J H, Ferrandon M, Myers D J, Jaouen F, Jia Q Y. Chemical vapour deposition of Fe-N-C oxygen reduction catalysts with full utilization of dense Fe-N4 sites[J]. Nat. Mater., 2021, 20(10): 1385-1391.
doi: 10.1038/s41563-021-01030-2 pmid: 34112977 |
[5] |
Wan X, Liu X F, Li Y C, Yu R H, Zheng L R, Yan W S, Wang H, Xu M, Shui J L. Fe-N-C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells[J]. Nat. Catal., 2019, 2(3): 259-268.
doi: 10.1038/s41929-019-0237-3 |
[6] |
Mehmood A, Gong M J, Jaouen F, Roy A, Zitolo A, Khan A, Sougrati M T, Primbs M, Bonastres A M, Fongalland D, Drazic G, Strasser P, Kucernak A. High loading of single atomic iron sites in Fe-NC oxygen reduction catalysts for proton exchange membrane fuel cells[J]. Nat. Catal., 2022, 5(4): 311-323.
doi: 10.1038/s41929-022-00772-9 |
[7] |
Li J Z, Chen M J, Cullen D A, Hwang S, Wang M Y, Li B Y, Liu K X, Karakalos S, Lucero M, Zhang H G, Lei C, Xu H, Sterbinsky G E, Feng Z X, Su D, More K L, Wang G F, Wang Z B, Wu G. Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells[J]. Nat. Catal., 2018, 1(12): 935-945.
doi: 10.1038/s41929-018-0164-8 |
[8] |
Zhang H G, Chung H T, Cullen D A, Wagner S, Kramm U I, More K L, Zelenay P, Wu G. High-performance fuel cell cathodes exclusively containing atomically dispersed iron active sites[J]. Energy Environ. Sci., 2019, 12(8): 2548-2558.
doi: 10.1039/C9EE00877B URL |
[9] |
He Y H, Hwang S, Cullen D A, Uddin M A, Langhorst L, Li B Y, Karakalos S, Kropf A J, Wegener E C, Sokolowski J, Chen M J, Myers D, Su D, More K L, Wang G F, Litster S, Wu G. Highly active atomically dispersed CoN4 fuel cell cathode catalysts derived from surfactant-assisted MOFs: carbon-shell confinement strategy[J]. Energy Environ. Sci., 2019, 12(1): 250-260.
doi: 10.1039/C8EE02694G URL |
[10] |
Yin H B, Xia H C, Zhao S Y, Li K X, Zhang J N, Mu S C. Atomic level dispersed metal-nitrogen-carbon catalyst toward oxygen reduction reaction: synthesis strategies and chemical environmental regulation[J]. Energy Environ. Mater., 2021, 4(1): 5-18.
doi: 10.1002/eem2.v4.1 URL |
[11] | Zhao S Y, Yin H B, Xia H C, Qu G, Yi S S, Pang H, Yan W F, Zhang J N, Mu S C. The assembling principle and strategies of high-density atomically dispersed catalysts[J]. Chem. Eng. J., 2021: 417. |
[12] |
Guo S Y, Yuan P F, Zhang J A, Jin P B, Sun H M, Lei K X, Pang X C, Xu Q, Cheng F Y. Atomic-scaled cobalt encapsulated in P,N-doped carbon sheaths over carbon nanotubes for enhanced oxygen reduction electrocatalysis under acidic and alkaline media[J]. Chem. Commun., 2017, 53(71): 9862-9865.
doi: 10.1039/C7CC05476A URL |
[13] | Zhao S N, Li J K, Wang R, Cai J M, Zang S Q. Electronically and geometrically modified single-atom Fe sites by adjacent Fe nanoparticles for enhanced oxygen reduction[J]. Adv. Mater., 2022, 34(5): e2107291. |
[14] |
Schulenburg H, Stankov S, Schunemann V, Radnik J, Dorbandt I, Fiechter S, Bogdanoff P, Tributsch H. Catalysts for the oxygen reduction from heat-treated iron(III) tetramethoxyphenylporphyrin chloride: structure and stability of active sites[J]. J. Phys. Chem. B, 2003, 107(34): 9034-9041.
doi: 10.1021/jp030349j URL |
[15] | Litster S, Wu G, Xu H. Advanced PGM-free cathode engineering for high power density and durability[C]// 2021 US DOE Hydrogen and Fuel Cell Technologies Annual Review Meeting, Pittsburgh: Carnegie Mellon University, 2021. |
[16] |
Proietti E, Jaouen F, Lefevre M, Larouche N, Tian J, Herranz J, Dodelet J P. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells[J]. Nat. Commun., 2011, 2: 416.
doi: 10.1038/ncomms1427 pmid: 21811245 |
[17] |
Chen G B, An Y, Liu S W, Sun F F, Qi H Y, Wu H F, He Y H, Liu P, Shi R, Zhang J, Kuc A, Kaiser U, Zhang T R, Heine T, Wu G, Feng X L. Highly accessible and dense surface single metal FeN4 active sites for promoting the oxygen reduction reaction[J]. Energy Environ. Sci., 2022, 15(6): 2619-2628.
doi: 10.1039/D2EE00542E URL |
[18] |
Guo J N, Li B J, Zhang Q Y, Liu Q T, Wang Z L, Zhao Y F, Shui J L, Xiang Z H. Highly accessible atomically dispersed Fe-Nx sites electrocatalyst for proton-exchange membrane fuel cell[J]. Adv. Sci., 2021, 8(5): 2002249.
doi: 10.1002/advs.v8.5 URL |
[19] |
Choi C H, Baldizzone C, Grote J P, Schuppert A K, Jaouen F, Mayrhofer K J J. Stability of fe-N-C catalysts in acidic medium studied by operando spectroscopy[J]. Angew. Chem. Int. Ed., 2015, 54(43): 12753-12757.
doi: 10.1002/anie.201504903 pmid: 26314711 |
[20] | Du L, Prabhakaran V, Xie X H, Park S, Wang Y, Shao Y Y. Low-PGM and PGM-free catalysts for proton exchange membrane fuel cells: stability challenges and material solutions[J]. Adv. Mater., 2021, 33(6): e1908232. |
[21] | Cheng W Z, Yuan P F, Lv Z R, Guo Y Y, Qiao Y Y, Xue X Y, Liu X, Bai W L, Wang K X, Xu Q, Zhang J N. Boosting defective carbon by anchoring well-defined atomically dispersed metal-N4 sites for ORR, OER, and Zn-air batteries[J]. Appl. Catal. B, 2020, 260. |
[22] |
Cheng W Z, Liang J L, Yin H B, Wang Y J, Yan W F, Zhang J N. Bifunctional iron-phtalocyanine metal-organic framework catalyst for ORR, OER and rechargeable zinc-air battery[J]. Rare Metals, 2020, 39(7): 815-823.
doi: 10.1007/s12598-020-01440-2 |
[23] |
Guo Y Y, Yuan P F, Zhang J N, Hu Y F, Amiinu I S, Wang X, Zhou J G, Xia H C, Song Z B, Xu Q, Mu S C. Carbon nanosheets containing discrete Co-Nx-By-C active sites for efficient oxygen electrocatalysis and rechargeable Zn-air batteries[J]. ACS Nano, 2018, 12(2): 1894-1901.
doi: 10.1021/acsnano.7b08721 URL |
[24] |
Guo Y Y, Yuan P F, Zhang J A, Xia H C, Cheng F Y, Zhou M F, Li J, Qiao Y Y, Mu S C, Xu Q. Co2P-CoN double active centers confined in N-doped carbon nanotube: heterostructural engineering for trifunctional catalysis toward HER, ORR, OER, and Zn-air batteries driven water splitting[J]. Adv. Funct. Mater., 2018, 28(51): 1805641.
doi: 10.1002/adfm.v28.51 URL |
[25] | Qiao Y Y, Yuan P F, Hu Y F, Zhang J N, Mu S C, Zhou J H, Li H, Xia H C, He J, Xu Q. Sulfuration of an Fe-N-C catalyst containing FexC/Fe species to enhance the catalysis of oxygen reduction in acidic media and for use in flexible Zn-air batteries[J]. Adv. Mater., 2018, 30(46): e1804504. |
[26] |
Wang M, Zhang C T, Meng T, Pu Z H, Jin H H, He D P, Zhang J N, Mu S C. Iron oxide and phosphide encapsulated within N,P-doped microporous carbon nanofibers as advanced tri-functional electrocatalyst toward oxygen reduction/evolution and hydrogen evolution reactions and zinc-air batteries[J]. J. Power Sources, 2019, 413: 367-375.
doi: 10.1016/j.jpowsour.2018.12.056 |
[27] |
Xue X Y, Yang H, Yang T, Yuan P F, Li Q, Mu S C, Zheng X L, Chi L F, Zhu J, Li Y G, Zhang J N, Xu Q. N, P-coordinated fullerene-like carbon nanostructures with dual active centers toward highly-efficient multi-functional electrocatalysis for CO2RR, ORR and Zn-air battery[J]. J. Mater. Chem. A, 2019, 7(25): 15271-15277.
doi: 10.1039/C9TA03828K URL |
[28] |
Yang G G, Zhu J W, Yuan P F, Hu Y F, Qu G, Lu B A, Xue X Y, Yin H B, Cheng W Z, Cheng J Q, Xu W J, Li J, Hu J S, Mu S C, Zhang J N. Regulating Fe-spin state by atomically dispersed Mn-N in Fe-N-C catalysts with high oxygen reduction activity[J]. Nat. Commun., 2021, 12(1): 1734.
doi: 10.1038/s41467-021-21919-5 pmid: 33741940 |
[29] |
Yin H B, Yuan P F, Lu B A, Xia H C, Guo K, Yang G G, Qu G, Xue D P, Hu Y F, Cheng J Q, Mu S C, Zhang J N. Phosphorus-driven electron delocalization on edge-type FeN4 active sites for oxygen reduction in acid medium[J]. ACS Catal., 2021, 11(20): 12754-12762.
doi: 10.1021/acscatal.1c02259 URL |
[30] | Zhu J W, Li W Q, Li S H, Zhang J, Zhou H, Zhang C T, Zhang J A, Mu S C. Defective N/S-codoped 3D cheese-like porous carbon nanomaterial toward efficient oxygen reduction and Zn-air batteries[J]. Small, 2018, 14(21): e1800563. |
[31] |
Qu X M, Han Y, Chen Y H, Lin J X, Li G, Yang J, Jiang Y X, Sun S G. Stepwise pyrolysis treatment as an efficient strategy to enhance the stability performance of Fe-Nx/C electrocatalyst towards oxygen reduction reaction and proton exchange membrane fuel cell[J]. Appl. Catal. B-Environ., 2021, 295: 120311.
doi: 10.1016/j.apcatb.2021.120311 URL |
[32] |
Wang X X, Cullen D A, Pan Y T, Hwang S, Wang M Y, Feng Z X, Wang J Y, Engelhard M H, Zhang H G, He Y H, Shao Y Y, Su D, More K L, Spendelow J S, Wu G. Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells[J]. Adv. Mater., 2018, 30(11): 1706758.
doi: 10.1002/adma.v30.11 URL |
[33] |
Lai Q X, Zheng L R, Liang Y Y, He J P, Zhao J X, Chen J H. Metal-organic-framework-derived Fe-N/C electrocatalyst with five-coordinated Fe-Nx Sites for advanced oxygen reduction in acid media[J]. ACS Catal., 2017, 7(3): 1655-1663.
doi: 10.1021/acscatal.6b02966 URL |
[34] |
Yu L, Deng D H, Bao X H. Chain mail for catalysts[J]. Angew. Chem. Int. Ed., 2020, 59(36): 15294-15297.
doi: 10.1002/anie.v59.36 URL |
[35] |
Yang G G, Zhu J W, Yuan P F, Hu Y F, Qu G, Lu B A, Xue X Y, Yin H B, Cheng W Z, Cheng J Q, Xu W J, Li J, Hu J S, Mu S C, Zhang J N. Regulating Fe-spin state by atomically dispersed Mn-N in Fe-N-C catalysts with high oxygen reduction activity[J]. Nat. Commun., 2021, 12(1): 1734.
doi: 10.1038/s41467-021-21919-5 pmid: 33741940 |
[36] |
Xie X H, He C, Li B Y, He Y H, Cullen D A, Wegener E C, Kropf A J, Martinez U, Cheng Y W, Engelhard M H, Bowden M E, Song M, Lemmon T, Li X S, Nie Z M, Liu J, Myers D J, Zelenay P, Wang G F, Wu G, Ramani V, Shao Y Y. Performance enhancement and degradation mechanism identification of a single-atom Co-N-C catalyst for proton exchange membrane fuel cells[J]. Nat. Catal., 2020, 3(12): 1044-1054.
doi: 10.1038/s41929-020-00546-1 |
[37] | Liu G, Li X G, Popov B N. Stability study of nitrogen-modified carbon composite catalysts for oxygen reduction reaction in polymer electrolyte membrane fuel cells[J]. ECS Trans., 2009, 25(1): 1251-1259. |
[38] |
Liu G, Li X G, Ganesan P, Popov B N. Studies of oxygen reduction reaction active sites and stability of nitrogen-modified carbon composite catalysts for PEM fuel cells[J]. Electrochim. Acta, 2010, 55(8): 2853-2858.
doi: 10.1016/j.electacta.2009.12.055 URL |
[39] |
Chenitz R, Kramm U I, Lefevre M, Glibin V, Zhang G X, Sun S H, Dodelet J P. A specific demetalation of Fe-N4 catalytic sites in the micropores of NC-Ar + NH3 is at the origin of the initial activity loss of the highly active Fe/N/C catalyst used for the reduction of oxygen in PEM fuel cells[J]. Energy Environ. Sci., 2018, 11(2): 365-382.
doi: 10.1039/C7EE02302B URL |
[40] |
Prabhakaran V, Wang G X, Parrondo J, Ramani V. Contribution of electrocatalyst support to PEM oxidative degradation in an operating PEFC[J]. J. Electrochem. Soc., 2016, 163(14): F1611-F1617.
doi: 10.1149/2.1311614jes URL |
[41] |
Zhao L, Zhu J B, Zheng Y, Xiao M L, Gao R, Zhang Z, Wen G B, Dou H Z, Deng Y P, Yu A P, Wang Z B, Chen Z W. Materials engineering toward durable electrocatalysts for proton exchange membrane fuel cells[J]. Adv. Energy Mater., 2021, 12(2): 2102665.
doi: 10.1002/aenm.v12.2 URL |
[42] |
Wang X L, Yang C, Wang X G, Zhu H W, Cao L J, Chen A Y, Gu L, Zhang Q H, Zheng L R, Liang H P. Green synthesis of a highly efficient and stable single-atom iron catalyst anchored on nitrogen-doped carbon nanorods for the oxygen reduction reaction[J]. ACS Sustainable Chem. Eng., 2020, 9(1): 137-146.
doi: 10.1021/acssuschemeng.0c05509 URL |
[43] |
Goellner V, Baldizzone C, Schuppert A, Sougrati M T, Mayrhofer K, Jaouen F. Degradation of Fe/N/C catalysts upon high polarization in acid medium[J]. Phys. Chem. Chem. Phys., 2014, 16(34): 18454-18462.
doi: 10.1039/c4cp02882a pmid: 25070913 |
[44] |
Choi C H, Baldizzone C, Polymeros G, Pizzutilo E, Kasian O, Schuppert A K, Sahraie N R, Sougrati M T, Mayrhofer K J J, Jaouen F. Minimizing operando demetallation of Fe-N-C electrocatalysts in acidic medium[J]. ACS Catal., 2016, 6(5): 3136-3146.
doi: 10.1021/acscatal.6b00643 URL |
[45] |
Chen Z, Jiang S, Kang G, Nguyen D, Schatz G C, Van duyne R P. Operando characterization of iron phthalocyanine deactivation during oxygen reduction reaction using electrochemical tip-enhanced Raman spectroscopy[J]. J. Am. Chem. Soc., 2019, 141(39): 15684-15692.
doi: 10.1021/jacs.9b07979 pmid: 31503482 |
[46] |
Snitkoff-sol R Z, Friedman A, Honig H C, Yurko Y, Kozhushner A, Zachman M J, Zelenay P, Bond A M, Elbaz L. Quantifying the electrochemical active site density of precious metal-free catalysts in situ in fuel cells[J]. Nat. Catal., 2022, 5(2): 163-170.
doi: 10.1038/s41929-022-00748-9 |
[47] |
Wei X, Wang R Z, Zhao W, Chen G, Chai M R, Zhang L, Zhang J J. Recent research progress in PEM fuel cell electrocatalyst degradation and mitigation strategies[J]. EnergyChem, 2021, 3(5): 100061.
doi: 10.1016/j.enchem.2021.100061 URL |
[48] |
He Y H, Wu G. PGM-Free oxygen-reduction catalyst development for proton-exchange membrane fuel cells: Challenges, solutions, and promises[J]. Acc. Mater. Res., 2022, 3(2): 224-236.
doi: 10.1021/accountsmr.1c00226 URL |
[49] |
Choi C H, Lim H K, Chung M W, Chon G, Sahraie N R, Altin A, Sougrati M T, Stievano L, Oh H S, Park E S, Luo F, Strasser P, Drazic G, Mayrhofer K J J, Kim H, Jaouen F. The Achilles’ heel of iron-based catalysts during oxygen reduction in an acidic medium[J]. Energy Environ. Sci., 2018, 11(11): 3176-3182.
doi: 10.1039/C8EE01855C URL |
[50] |
Herranz J, Jaouen F, Lefevre M, Kramm U I, Proietti E, Dodelet J P, Bogdanoff P, Fiechter S, Abs-wurmbach I, Bertrand P, Arruda T M, Mukerjee S. Unveiling N-protonation and anion-binding effects on Fe/N/C-catalysts for O2 reduction in PEM fuel cells[J]. J. Phys. Chem. C, 2011, 115(32): 16087-16097.
doi: 10.1021/jp2042526 URL |
[51] |
Lefèvre M, Dodelet J P. Fe-based catalysts for the reduction of oxygen in polymer electrolyte membrane fuel cell conditions: Determination of the amount of peroxide released during electroreduction and its influence on the stability of the catalysts[J]. Electrochim. Acta, 2003, 48(19): 2749-2760.
doi: 10.1016/S0013-4686(03)00393-1 URL |
[52] |
Preger Y, Gerken J B, Biswas S, Anson C W, Johnson M R, Root T W, Stahl S S. Quinone-mediated electrochemical O2 reduction accessing high power density with an off-electrode Co-N/C Catalyst[J]. Joule, 2018, 2(12): 2722-2731.
doi: 10.1016/j.joule.2018.09.010 URL |
[53] |
Zhang P Y, Wang Y C, You Y Z, Yuan J Y, Zhou Z Y, Sun S G. Generation pathway of hydroxyl radical in Fe/N/C-based oxygen reduction electrocatalysts under acidic media[J]. J. Phys. Chem. Lett., 2021, 12(32): 7797-7803.
doi: 10.1021/acs.jpclett.1c01905 pmid: 34375530 |
[54] |
Gubler L, Dockheer S M, Koppenol W H. Radical (HO•, H• and HOO•) formation and ionomer degradation in polymer electrolyte fuel cells[J]. J. Electrochem. Soc., 2011, 158(7): B755-B769.
doi: 10.1149/1.3581040 URL |
[55] |
Li J K, Sougrati M T, Zitolo A, Ablett J M, Oguz I C, Mineva T, Matanovic I, Atanassov P, Huang Y, Zenyuk I, Di cicco A, Kumar K, Dubau L, Maillard F, Drazic G, Jaouen F. Identification of durable and non-durable FeNx sites in Fe-N-C materials for proton exchange membrane fuel cells[J]. Nat. Catal., 2020, 4(1): 10-19.
doi: 10.1038/s41929-020-00545-2 |
[56] |
Wang X X, Swihart M T, Wu G. Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation[J]. Nat. Catal., 2019, 2(7): 578-589.
doi: 10.1038/s41929-019-0304-9 |
[57] |
Mamtani K, Jain D, Zemlyanov D, Celik G, Luthman J, Renkes G, Co A C, Ozkan U S. Probing the oxygen reduction reaction active sites over nitrogen-doped carbon nanostructures (CNx) in acidic media using phosphate anion[J]. ACS Catal., 2016, 6(10): 7249-7259.
doi: 10.1021/acscatal.6b01786 URL |
[58] |
Rauf M, Zhao Y D, Wang Y C, Zheng Y P, Chen C, Yang X D, Zhou Z Y, Sun S G. Insight into the different ORR catalytic activity of Fe/N/C between acidic and alkaline media: Protonation of pyridinic nitrogen[J]. Electrochem. Commun., 2016, 73: 71-74.
doi: 10.1016/j.elecom.2016.10.016 URL |
[59] |
Yang N, Peng L L, Li L, Li J, Liao Q, Shao M H, Wei Z D. Theoretically probing the possible degradation mechanisms of an FeNC catalyst during the oxygen reduction reaction[J]. Chem. Sci., 2021, 12(37): 12476-12484.
doi: 10.1039/d1sc02901k pmid: 34603679 |
[60] |
Zhang G X, Chenitz R, Lefèvre M, Sun S H, Dodelet J P. Is iron involved in the lack of stability of Fe/N/C electrocatalysts used to reduce oxygen at the cathode of PEM fuel cells?[J]. Nano Energy, 2016, 29: 111-125.
doi: 10.1016/j.nanoen.2016.02.038 URL |
[61] |
Choi J Y, Yang L J, Kishimoto T, Fu X G, Ye S Y, Chen Z W, Banham D. Is the rapid initial performance loss of Fe/N/C non precious metal catalysts due to micropore flooding?[J]. Energy Environ. Sci., 2017, 10(1): 296-305.
doi: 10.1039/C6EE03005J URL |
[62] |
Chenitz R, Kramm U I, Lefevre M, Glibin V, Zhang G X, Sun S H, Dodelet J P. A specific demetalation of Fe-N4 catalytic sites in the micropores of NC-Ar + NH3 is at the origin of the initial activity loss of the highly active Fe/N/C catalyst used for the reduction of oxygen in PEM fuel cells[J]. Energy Environ. Sci., 2018, 11(2): 365-382.
doi: 10.1039/C7EE02302B URL |
[63] |
Mustain W E, Chatenet M, Page M, Kim Y S. Durability challenges of anion exchange membrane fuel cells[J]. Energy Environ. Sci., 2020, 13(9): 2805-2838.
doi: 10.1039/D0EE01133A URL |
[64] |
Deng D H, Yu L, Chen X Q, Wang G X, Jin L, Pan X L, Deng J, Sun G Q, Bao X H. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction[J]. Angew. Chem. Int. Ed., 2013, 52(1): 371-375.
doi: 10.1002/anie.201204958 pmid: 23225769 |
[65] |
Bhosale A C, Rengaswamy R. Interfacial contact resistance in polymer electrolyte membrane fuel cells: Recent developments and challenges[J]. Renew. Sust. Energ. Rev., 2019, 115: 109351.
doi: 10.1016/j.rser.2019.109351 URL |
[66] |
Banham D, Kishimoto T, Sato T, Kobayashi Y, Narizuka K, Ozaki J I, Zhou Y, Marquez E, Bai K, Ye S. New insights into non-precious metal catalyst layer designs for proton exchange membrane fuel cells: Improving performance and stability[J]. J. Power Sources, 2017, 344: 39-45.
doi: 10.1016/j.jpowsour.2017.01.086 URL |
[67] |
Kumar K, Dubau L, Mermoux M, Li J K, Zitolo A, Nelayah J, Jaouen F, Maillard F. On the influence of oxygen on the degradation of Fe-N-C catalysts[J]. Angew. Chem. Int. Ed., 2020, 59(8): 3235-3243.
doi: 10.1002/anie.201912451 pmid: 31799800 |
[68] | Miao Z P, Wang X M, Zhao Z L, Zuo W B, Chen S Q, Li Z Q, He Y H, Liang J S, Ma F, Wang H L, Lu G, Huang Y H, Wu G, Li Q. Improving the stability of non-noble-metal M-N-C catalysts for proton-exchange-membrane fuel cells through M-N bond length and coordination regulation[J]. Adv. Mater., 2021, 33(39): e2006613. |
[69] |
Chen Y C, Matanovic I, Weiler E, Atanassov P, Artyushkova K. Mechanism of oxygen reduction reaction on transition metal-nitrogen-carbon catalysts: Establishing the role of nitrogen-containing active sites[J]. ACS Appl. Energy Mater., 2018, 1(11): 5948-5953.
doi: 10.1021/acsaem.8b00959 URL |
[70] |
Zhang G X, Yang X H, Dubois M, Herraiz M, Chenitz R, Lefevre M, Cherif M, Vidal F, Glibin V P, Sun S H, Dodelet J P. Non-PGM electrocatalysts for PEM fuel cells: Effect of fluorination on the activity and stability of a highly active NC-Ar + NH3 catalyst[J]. Energy Environ. Sci., 2019, 12(10): 3015-3037.
doi: 10.1039/C9EE00867E URL |
[71] |
Chang J F, Wang G Z, Wang M Y, Wang Q, Li B Y, Zhou H, Zhu Y M, Zhang W, Omer M, Orlovskaya N, Ma Q, Gu M, Feng Z X, Wang G F, Yang Y. Improving Pd-N-C fuel cell electrocatalysts through fluorination-driven rearrangements of local coordination environment[J]. Nat. Energy, 2021, 6(12): 1144-1153.
doi: 10.1038/s41560-021-00940-4 |
[72] |
Gupta S, Zhao S, Wang X X, Hwang S, Karakalos S, Devaguptapu S V, Mukherjee S, Su D, Xu H, Wu G. Quaternary FeCoNiMn-based nanocarbon electrocatalysts for bifunctional oxygen reduction and evolution: promotional role of Mn doping in stabilizing carbon[J]. ACS Catal., 2017, 7(12): 8386-8393.
doi: 10.1021/acscatal.7b02949 URL |
[73] |
Luo E G, Zhang H, Wang X, Gao L Q, Gong L Y, Zhao T, Jin Z, Ge J J, Jiang Z, Liu C P, Xing W. Single-atom Cr-N4 sites designed for durable oxygen reduction catalysis in acid media[J]. Angew. Chem. Int. Ed., 2019, 58(36): 12469-12475.
doi: 10.1002/anie.v58.36 URL |
[74] |
Luo F, Roy A R, Silvioli L, Cullen D A, Zitolo A, Sougrati M T, Oguz I C, Mineva T, Teschner D, Wagner S, Wen J, Dionigi F, Kramm U I, Rossmeisl J, Jaouen F, Strasser P. P-block single-metal-site tin/nitrogen-doped carbon fuel cell cathode catalyst for oxygen reduction reaction[J]. Nat. Mater., 2020, 19(11): 1215-1223.
doi: 10.1038/s41563-020-0717-5 |
[75] |
Wang T Z, Cao X J, Qin H Y, Shang L, Zheng S Y, Fang F, Jiao L F. P-block atomically dispersed antimony catalyst for highly efficient oxygen reduction reaction[J]. Angew. Chem. Int. Ed., 2021, 60(39): 21237-21241.
doi: 10.1002/anie.202108599 pmid: 34254419 |
[76] | Hu H, Wang J J, Cui B F, Zheng X R, Lin J G, Deng Y D, Han X P. Atomically dispersed selenium sites on nitrogen-doped carbon for efficient electrocatalytic oxygen reduction[J]. Angew. Chem. Int. Ed., 2022, 61(3): e202114441. |
[77] |
Zhu J W, Mu S C. Active site engineering of atomically dispersed transition metal-heteroatom-carbon catalysts for oxygen reduction[J]. Chem. Commun., 2021, 57(64): 7869-7881.
doi: 10.1039/D1CC03076K URL |
[78] |
Jin H H, Zhu J W, Yu R H, Li W Q, Ji P X, Liang L H, Liu B S, Hu C X, He D P, Mu S C. Tuning the Fe-N4 sites by introducing Bi-O bonds in a Fe-N-C system for promoting the oxygen reduction reaction[J]. J. Mater. Chem. A, 2022, 10(2): 664-671.
doi: 10.1039/D1TA08256F URL |
[79] |
Ma L G, Li J L, Zhang Z W, Yang H, Mu X Q, Gu X Y, Jin H H, Chen D, Yan S L, Liu S L, Mu S C. Atomically dispersed dual Fe centers on nitrogen-doped bamboo-like carbon nanotubes for efficient oxygen reduction[J]. Nano Res., 2021, 15(3): 1966-1972.
doi: 10.1007/s12274-021-3845-6 |
[80] |
Zhang J, Zhang J J, He F, Chen Y J, Zhu J W, Wang D L, Mu S C, Yang H Y. Defect and doping Co-engineered non-metal nanocarbon ORR electrocatalyst[J]. Nano-Micro Lett., 2021, 13(1): 65.
doi: 10.1007/s40820-020-00579-y pmid: 34138232 |
[1] | 刘思淼, 周景娇, 季世军, 文钟晟. FeNi-CoP/NC双功能催化剂的制备及电催化性能研究[J]. 电化学(中英文), 2023, 29(10): 211118-. |
[2] | 王雪, 张丽, 刘长鹏, 葛君杰, 祝建兵, 邢巍. 碱性介质中非贵金属氧还原催化剂的结构调控进展[J]. 电化学(中英文), 2022, 28(2): 2108501-. |
[3] | 张焰峰, 肖菲, 陈广宇, 邵敏华. 基于非贵金属氧还原催化剂的质子交换膜燃料电池性能[J]. 电化学(中英文), 2020, 26(4): 563-572. |
[4] | 张雅琳,陈驰,邹亮亮,邹志青,杨辉. Fe-N共掺杂的碳纳米管串联空心球对氧还原反应的电催化[J]. 电化学(中英文), 2018, 24(6): 726-732. |
[5] | 肖梅玲,祝建兵,刘长鹏,葛君杰,邢 巍. 包覆型非贵金属氧还原催化剂的研究进展[J]. 电化学(中英文), 2016, 22(2): 101-112. |
[6] | 宋平, 阮明波, 刘京, 冉光钧, 徐维林. 燃料电池非铂基氧还原电催化剂的最新研究进展[J]. 电化学(中英文), 2015, 21(2): 130-137. |
[7] | 张兴芳, 梁镇海, 石文平, 樊彩梅, . 钛电极苯酚降解反应动力学的Monte Carlo模拟[J]. 电化学(中英文), 2009, 15(3): 336-340. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||