电化学(中英文) ›› 2016, Vol. 22 ›› Issue (6): 570-576. doi: 10.13208/j.electrochem.160569
• 界面电化学近期研究专辑(厦门大学 毛秉伟教授) • 上一篇 下一篇
林晓东,陈杜宏,田中群*
收稿日期:
2016-09-23
修回日期:
2016-11-28
出版日期:
2016-12-28
发布日期:
2016-12-02
通讯作者:
田中群
E-mail:zqtian@xmu. edu. cn
基金资助:
国家自然科学基金项目(No. 2011YQ030124)资助
LIN Xiao-dong, CHEN Du-hong, TIAN Zhong-qun*
Received:
2016-09-23
Revised:
2016-11-28
Published:
2016-12-28
Online:
2016-12-02
Contact:
TIAN Zhong-qun
E-mail:zqtian@xmu. edu. cn
摘要:
在本课题组研究55 nm Au@Pd@Pt对甲酸电催化效果基础上,我们采用Ag取代Au制备55 nm Ag@Pd@Pt纳米粒子以降低催化剂的成本,并对甲酸的电催化行为进行研究. 研究表明:少量Pt的存在可大幅度提高催化剂的活性,当Pt的覆盖度为0.5 单原子层(ML)时,起始氧化电位最为靠前,氧化峰电流最大,这与Au@Pd@Pt纳米粒子对甲酸电催化行为类似. 与Au@Pd@Pt纳米粒子相比,其最佳起始氧化电位偏正0.05 V,但电催化活性并没有明显的降低. 通过改变催化剂比表面积研究甲酸的电催化行为,发现将9 nm Ag纳米粒子作为内核的9 nm Ag@Pd@Pt负载在活性炭中,在保持催化活性不变的情况下,碳载的催化剂价格可比55 nm Au@Pd@Pt纳米粒子降低220倍左右.
中图分类号:
林晓东,陈杜宏,田中群. 壳层厚度可调控的Ag@Pd@Pt纳米粒子的合成和甲酸电催化研究[J]. 电化学(中英文), 2016, 22(6): 570-576.
LIN Xiao-dong, CHEN Du-hong, TIAN Zhong-qun. Syntheses of Ag@Pd@Pt Nanoparticles with Tunable Shell Thickness for Electrochemical Oxidation of Formic Acid[J]. Journal of Electrochemistry, 2016, 22(6): 570-576.
[1] Jahnke T, Futter G, Latz A, et al. Performance and degradation of proton exchange membrane fuel cells: State of the art in modeling from atomistic to system scale[J]. Journal of Power Sources, 2016, 304: 207-233. [2] Roen L M, Paik C H, Jarvic T D. Electrocatalytic corrosion of carbon support in PEMFC cathodes[J]. Electrochemical and Solid State letters, 2004, 7(1): A19-A22. [3] Varcoe J R, Slade R C T. Prospects for alkaline anion-exchange membranes in low temperature fuel cells[J]. Fuel Cells, 2005, 5(2): 187-200. [4] Sommer E M, Vargas J V C, Martins L S, et al. The maximization of an alkaline membrane fuel cell (AMFC) net power output[J]. International Journal Energy Research, 2016, 40(7): 924-939. [5] Yu X, Pickup P G. Recent advances in direct formic acid fuel cells (DFAFC)[J]. Journal of Power Sources, 2008, 182(1): 124-132. [6] Park I S, Lee K S, Choi J H, et al. Surface structure of Pt-modified Au nanoparticles and electrocatalytic activity in formic acid electro-oxidation[J]. Journal of Physical Chemistry C 2007, 111(51): 19126-19133. [7] Chen W, Kim J, Sun S, et al. Composition effects of FePt alloy nanoparticles on the electro-oxidation of formic acid[J]. Langmuir, 2007, 23(22): 11303-11310. [8] Li D, Meng F, Wang H, et al. Nanoporous AuPt alloy with low Pt content: A remarkable electrocatalyst with enhanced activity towards formic acid electro-oxidation[J]. Electrochimica Acta 2016,190 (0013-4686): 852-861. [9] Zhang Z, Wang Y, Wang X. Nanoporous bimetallic Pt-Au alloy nanocomposites with superior catalytic activity towards electro-oxidation of methanol and formic acid[J]. Nanoscale, 2011, 3(4):1663-1674. [10] Zhang H, Wang C, Wang J, et al. Carbon-supported Pd-Pt nanoalloy with low Pt content and superior catalysis for formic acid electro-oxidation[J]. Journal of Physical Chemistry C, 2010, 114(14): 6446-6451. [11] Du C, Chen M, Wang W, et al. Nanoporous PdNi Alloy Nanowires As Highly Active Catalystsfor the Electro-Oxidation of Formic Acid[J]. ACS Applied Materials & Interfaces, 2011, 3(2): 105-109. [12] Zhou Y, Du C, Han G, et al. Ultra-low Pt decorated PdFe alloy nanoparticles for formic acid electro-oxidation[J]. Electrochimica Acta, 2016, 217: 203-209. [13] Al-Akraa I M, Mohammad A M, El-Deab M S, et al. Electrocatalysis by design: Synergistic catalytic enhancement of formic acid electro-oxidation at core-shell Pd/Pt nanocatalysts[J]. International Journal of Hydrogen Energy, 2015, 40(4): 1789-1794. [14] Wang S, Yang G, Yang S. Pt-Frame@Ni quasi core-shell concave octahedral PtNi3 bimetallic nanocrystals for electrocatalytic methanol oxidation and hydrogen evolution[J]. The Journal of Physical Chemistry C, 2015, 119(50): 27938-27945. [15] Wang D, Xin H L, Hovden R, et al. Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts[J]. Nature Materials, 2013, 12(1): 81-87. [16] Fang P-P, Duan S, Lin X-D, et al. Tailoring Au-core Pd-shell Pt-cluster nanoparticles for enhanced electrocatalytic activity[J]. Chemical Science, 2011, 2(3): 531-539. [17] Pillai Z S, Kamat P V. What factors control the size and shape of silver nanoparticles in the citrate ion reduction method[J]. The Journal of Physical Chemistry B, 2003, 108(3): 945-951. [18] Xia B Y, Wu H B, Wang X, et al. One-pot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction[J]. Journal of the American Chemical Society, 2012, 134(34): 13934-13937. [19] Strasser P, Koh S, Anniyev T, et al. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts[J]. Nature Chemistry, 2010, 2(6): 454-460. [20] Tedsree K, Li T, Jones S, et al. Hydrogen production from formic acid decomposition at room temperature using a Ag-Pd core-shell nanocatalyst[J]. Nature Nanotechnology, 2011, 6(5): 302-307. [21] Zhang S, Metin Ö, Su D, et al. Monodisperse AgPd alloy nanoparticles and their superior catalysis for the dehydrogenation of formic acid[J]. Angewandte Chemie International Edition, 2013, 52(13): 3681-3684. |
[1] | 陈品松, 胡一涛, 张信义, 沈培康. 立体构造石墨烯材料对铅酸蓄电池负极性能影响的研究[J]. 电化学(中英文), 2020, 26(6): 834-843. |
[2] | 张泽阳, 孙岚, 林昌健. RGO-TiO2纳米管阵列的制备及其光电性能[J]. 电化学(中英文), 2020, 26(6): 844-849. |
[3] | 马武威, 常启刚, 史雄芳, 童延斌, 周立, 叶邦策, 鲁建江, 赵金虎. 基于纳米孔金与离子印迹聚合物结合的新型电化学传感器用于测定砷离子(III)[J]. 电化学(中英文), 2020, 26(6): 900-910. |
[4] | 杨纳川, 王玉, 帅毅, 陈康华. 低成本硫化物固态电解质Li6-xPS5-xClx的制备与性能研究[J]. 电化学(中英文), 2020, 26(6): 885-889. |
[5] | 晋通正, 杨雨萌, 范圣慧, 卫国英, 张昭. 溶解氧及波长对光助阳极沉积CeO2薄膜的影响[J]. 电化学(中英文), 2020, 26(6): 868-875. |
[6] | 娄景媛, 尤东江, 李雪菁. 全钒氧化还原液流电池用石墨毡电极的分步氧化活化[J]. 电化学(中英文), 2020, 26(6): 876-884. |
[7] | 吴凯. 锂硫电池正极材料的制备及工艺优化[J]. 电化学(中英文), 2020, 26(6): 825-833. |
[8] | 俞成荣, 朱建国, 蒋聪盈, 谷宇晨, 周晔欣, 李卓斌, 邬荣敏, 仲政, 官万兵. 基于电-化-热耦合理论对称双阴极固体氧化物燃料电池堆的电流与温度场数值模拟[J]. 电化学(中英文), 2020, 26(6): 789-796. |
[9] | 朱畅, 陈为, 宋艳芳, 董笑, 李桂花, 魏伟, 孙予罕. 反应条件对铜催化CO2电还原的影响[J]. 电化学(中英文), 2020, 26(6): 797-807. |
[10] | 王学良, 丛媛媛, 邱晨曦, 王盛杰, 秦嘉琪, 宋玉江. 核壳结构Ru@PtRu纳米花电催化剂的制备及碱性氢析出反应性能研究[J]. 电化学(中英文), 2020, 26(6): 815-824. |
[11] | 段明涛, 蒙延双, 张红帅. Ni3S2@碳纳米管复合材料的制备及其储钠性能[J]. 电化学(中英文), 2020, 26(6): 850-858. |
[12] | 王存, 张维江, 何腾飞, 雷博, 史尤杰, 郑耀东, 罗伟林, 蒋方明. NCA三元锂离子电池分荷电状态循环的热特性和容量衰退研究[J]. 电化学(中英文), 2020, 26(6): 777-788. |
[13] | 王怡捷, 钮东方, 张新胜. 离子液体中18-冠醚-6添加剂对三价铬电沉积的影响[J]. 电化学(中英文), 2020, 26(6): 859-867. |
[14] | 沈茎, 王子明, 郑大江, 宋光铃. 钝化与过钝化状态下304不锈钢的点蚀行为研究[J]. 电化学(中英文), 2020, 26(6): 808-814. |
[15] | 邢逸飞, 李娜, 温晓芳, 韩宏彦, 崔敏, 张聪, 任聚杰, 籍雪平. 基于取代型多酸复合材料的多巴胺电化学检测[J]. 电化学(中英文), 2020, 26(6): 890-899. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||