[1] |
Cha S W, O'Hayre R, Colella W, Prinz F B. Fuel cell fundamentals[M]. USA: John Wiley & Sons, 2016.
|
[2] |
Zhou W J(周卫江). Research on the anode catalysts for low-temperature direct alcohol fuel cells[D]. Graduate Un-iversity of Chinese Academy of Sciences (Dalian Institute of Chemical Physics)(中科院大连化学物理研究所), 2003.
|
[3] |
Batista E A, Hoster H, Iwasita T. Analysis of FTIRS data and thermal effects during methanol oxidation on UHV-cleaned PtRu alloys[J]. Electroanal. Chem., 2003, 554(1): 265-271.
|
[4] |
Batista E A, Malpass G R P, Motheo A J, Iwasita T. New insight into the pathways of methanol oxidation[J]. Electro-chem. Commun., 2003, 5(10): 843-846.
|
[5] |
Hamnett A. Mechanism and electrocatalysis in the direct methanol fuel cell[J]. Catal. Today, 1997, 38(4): 445-457.
doi: 10.1016/S0920-5861(97)00054-0
URL
|
[6] |
Dunsch L. Modern aspects of electrochemistry[M]. Butterworths Scientific Publications, 1954.
|
[7] |
Alayoglu S, Nilekar A U, Mavrikakis M, Eichhorn B. Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen[J]. Nat. Mater., 2008, 7(4): 333-338.
doi: 10.1038/nmat2156
pmid: 18345004
|
[8] |
Bao Y F, Wang F L, Gu X C, Feng L G. Core-shell structured PtRu nanoparticles@FeP promoter with efficient nanointerface for alcohol fuels electrooxidation[J]. Nano-scale, 2019, 11(40): 18866-18873.
|
[9] |
Guo J S(郭军松). Studies on PtRu/C and PtRu black ele-ctrocatalysts for direct methanol fuel cells[D]. Graduate University of Chinese Academy of Sciences (Dalian Institute of Chemical Physics)(中科院大连化学物理研究所), 2007.
|
[10] |
Jiang L H(姜鲁华). Research on anode electrocatalysts for direct alcohol fuel cells[D]. Graduate University of Chinese Academy of Sciences (Dalian Institute of Chemical Physics)(中科院大连化学物理研究所), 2005.
|
[11] |
Liang H, Zhang X P, Wang Q Q, Han Y J, Fang Y X, Dong S J. Shape-control of Pt-Ru nanocrystals: tuning surface structure for enhanced electrocatalytic methanol oxidation[J]. J. Am. Chem. Soc., 2018, 140(3): 1142-1147.
doi: 10.1021/jacs.7b12353
pmid: 29283565
|
[12] |
Antolini E. Iridium as catalyst and cocatalyst for oxygen evolution/reduction in acidic polymer electrolyte membrane electrolyzers and fuel cells[J]. ACS Catal., 2014, 4(5): 1426-1440.
doi: 10.1021/cs4011875
URL
|
[13] |
Xu J F, Liu X Y, Chen Y, Zhou Y M, Lu T H, Tang Y W. Platinum-cobalt alloy networks for methanol oxidation electrocatalysis[J]. J. Mater. Chem., 2012, 22(44): 23659-23667.
doi: 10.1039/c2jm35649j
URL
|
[14] |
Lu S Q, Li H M, Sun J Y, Zhuang Z B. Promoting the methanol oxidation catalytic activity by introducing surface nickel on platinum nanoparticles[J]. Nano Research, 2018, 11(4): 2058-2068.
doi: 10.1007/s12274-017-1822-x
URL
|
[15] |
Li H H, Fu Q Q, Xu L, Ma S Y, Zheng Y R, Liu X J, Yu S H. Highly crystalline PtCu nanotubes with three dimensional molecular accessible and restructured surface for efficient catalysis[J]. Energy. Environ. Sci., 2017, 10(8): 1751-1756.
doi: 10.1039/C7EE00573C
URL
|
[16] |
Qin C L, Fan A X, Zhang X, Dai X P, Sun H, Ren D H, Dong Z, Wang Y, Luan C L, Ye J Y, Sun S G. The in situ etching assisted synjournal of Pt-Fe-Mn ternary alloys with high-index facets as efficient catalysts for electro-oxidation reactions[J]. Nanoscale, 2019, 11(18): 9061-9075.
doi: 10.1039/C8NR10231G
URL
|
[17] |
Lee K S, Park I S, Cho Y H, Jung D S, Jung N, Park H Y, Sung Y E. Electrocatalytic activity and stability of Pt supported on Sb-doped SnO2 nanoparticles for direct alcohol fuel cells[J]. J. Catal., 2008, 258(1): 143-152.
doi: 10.1016/j.jcat.2008.06.007
URL
|
[18] |
Mao J J, Chen Y J, Pei J J, Wang D S, Li Y D. Pt-M (M = Cu, Fe, Zn, etc) bimetallic nanomaterials with abundant surface defects and robust catalytic properties[J]. Chem. Commun., 2016, 52(35): 5985-5988.
doi: 10.1039/C6CC02264B
URL
|
[19] |
Papadimitriou S, Armyanov S, Valova E, Hubin A, Steen-haut O, Pavlidou E, Kokkinidis G, Sotiropoulos S. Methanol oxidation at Pt-Cu, Pt-Ni, and Pt-Co electrode coatings prepared by a galvanic replacement process[J]. Phys. Chem. C, 2010, 114(11): 5217-5223.
doi: 10.1021/jp911568g
URL
|
[20] |
Tritsaris G, Rossmeisl J. Methanol oxidation on model elemental and bimetallic transition metal surfaces[J]. Phys. Chem. C, 2012, 116(22): 11980-11986.
doi: 10.1021/jp209506d
URL
|
[21] |
Yu X F, Wang D S, Peng Q, Li Y D. High performance electrocatalyst: Pt-Cu hollow nanocrystals[J]. Chem. Com-mun., 2011, 47(28): 8094-8096.
|
[22] |
Zhang J T, Ma J Z, Wan Y, Jiang J W, Zhao X S. Dendritic Pt-Cu bimetallic nanocrystals with a high electrocatalytic activity toward methanol oxidation[J]. Mater. Chem. Phys., 2012, 132(2): 244-247.
doi: 10.1016/j.matchemphys.2011.12.024
URL
|
[23] |
Xu D, Liu Z P, Yang H Z, Liu Q S, Zhang J, Fang J Y, Zou S Z, Sun K. Solution-based evolution and enhanced methanol oxidation activity of monodisperse platinum-copper nanocubes[J]. Angew. Chem. Int. Ed., 2009, 48(23): 4217-4221.
doi: 10.1002/anie.v48:23
URL
|
[24] |
Yin A X, Min X Q, Zhu W, Liu W C, Zhang Y W, Yan C H. Pt-Cu and Pt-Pd-Cu concave nanocubes with high-index facets and superior electrocatalytic activity[J]. J. Chem. Eur., 2012, 18(3): 777-782.
doi: 10.1002/chem.v18.3
URL
|
[25] |
Liao Y, Yu G, Yu Z, Guo T T, Chang F F, Zhong C J. Composition-tunable PtCu alloy nanowires and electrocatalytic synergy for methanol oxidation reaction[J]. Phys. Chem. C, 2016, 120(19): 10476-10484.
doi: 10.1021/acs.jpcc.6b02630
URL
|
[26] |
Luo S P, Shen P K. Concave platinum-copper octopod nanoframes bounded with multiple high index facets for efficient electrooxidation catalysis[J]. ACS. Nano, 2017, 11(12): 11946-11953.
doi: 10.1021/acsnano.6b04458
URL
|
[27] |
Li X L, Zhou Y S, Du Y Y, Xu J, Wang W C, Chen Z D, Cao J Y. PtCu nanoframes as ultra-high performance electrocatalysts for methanol oxidation[J]. Int. J. Hydrogen. Energy, 2019, 44(33): 18050-18057.
doi: 10.1016/j.ijhydene.2019.05.072
URL
|
[28] |
Lu L F, Chen S T, Thota S, Wang X D, Wang Y C, Zou S H, Fan J, Zhao J. Composition controllable synjournal of PtCu nanodendrites with efficient electrocatalytic activity for methanol oxidation induced by high index surface and electronic interaction[J]. J. Phys. Chem. C, 2017, 121(36): 19796-19806.
doi: 10.1021/acs.jpcc.7b05629
URL
|
[29] |
Chen G J, Shan H Q, Li Y, Bao H W, Hu T W, Zhang L, Liu S, Ma F. Hollow PtCu nanoparticles encapsulated into a carbon shell via mild annealing of Cu metal-organic frameworks[J]. J. Mater. Chem. A, 2020, 8(20): 10337-10345.
doi: 10.1039/D0TA01549K
URL
|
[30] |
Liu C H, Zhang L L, Sun L, Wang W C, Chen Z D. Enhanced electrocatalytic activity of PtCu bimetallic nanoparticles on CeO2/carbon nanotubes for methanol electro-oxidation[J]. Int. J. Hydrogen. Energy, 2020, 45(15): 8558-8567.
doi: 10.1016/j.ijhydene.2020.01.063
URL
|
[31] |
Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C. First-principles simulation: ideas, illustrations and the CASTEP code[J]. J. Phys. Con-dens. Matter, 2002, 14(11): 2717-2744.
|
[32] |
Perdew J P, Burke K, Yue W. Generalized gradient approximation for the exchange-correlation hole of a many-electron system[J]. Phys. Rev. B, 1996, 54(23): 16533-16539.
pmid: 9985776
|
[33] |
Hammer B, Hansen L B, Nörskov J K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerh of functionals[J]. Phys. Rev. B, 1999, 59(11): 7413-7421.
doi: 10.1103/PhysRevB.59.7413
URL
|
[34] |
Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Phys. Rev. B, 1976, 13(12): 5188-5192.
doi: 10.1103/PhysRevB.13.5188
URL
|
[35] |
Peng X L, Zhao Y C, Chen D H, Fan Y F, Wang X, Wang W L, Tian J N. One-pot synjournal of reduced oxide graphene supported PtCu catalysts with enhanced electro-catalytic activity for the methanol oxidation reaction[J]. Electrochim. Acta, 2014, 136: 292-300.
doi: 10.1016/j.electacta.2014.05.110
URL
|
[36] |
Zhao R P, Fu G T, Chen Z J, Tang Y W, Wang Y, Huang S M. A novel strategy for the synjournal of hollow Pt-Cu tetradecahedrons as an efficient electrocatalyst toward methanol oxidation[J]. Cryst. Eng. Comm., 2019, 21(12): 1903-1909.
doi: 10.1039/C9CE00039A
URL
|
[37] |
Xu Z, Zhang H M, Liu S S, Zhang B S, Zhong H X, Su D S. Facile synjournal of supported Pt-Cu nanoparticles with surface enriched Pt as highly active cathode catalyst for proton exchange membrane fuel cells[J]. Int. J. Hydrogen. Energy, 2012, 37(23): 17978-17983.
doi: 10.1016/j.ijhydene.2012.09.050
URL
|
[38] |
Fu S F, Zhu C Z, Song J H, Engelhard M H, Xia H B, Du D, Lin Y H. Kinetically controlled synjournal of Pt-Based one-dimensional hierarchically porous nanostructures with large mesopores as highly efficient ORR catalysts[J]. ACS Appl. Mater. Interfaces, 2016, 8: 35213-35218.
doi: 10.1021/acsami.6b11537
URL
|
[39] |
Pozio A, Francesco M D, Cemmi A, Cardellini F, Giorgi L. Comparison of high surface Pt/C catalysts by cyclic voltammetry[J]. J. Power. Sources, 2002, 105(1): 13-19.
doi: 10.1016/S0378-7753(01)00921-1
URL
|