[1] |
Goodenough J B, Park K S.The Li-ion rechargeable battery: a perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176.
doi: 10.1021/ja3091438
URL
pmid: 23294028
|
[2] |
Armand M, Tarascon J M.Building better batteries[J]. Nature, 2008, 451(7179): 652-657.
doi: 10.1038/451652a
URL
pmid: 18256660
|
[3] |
Wang J(王剑), Li T J(李桐进), Qi L(其鲁). Progress in high power lithium-ion secondary battery[J]. Acta Physico-himica Sinica(物理化学学报), 2007, 23(Supp): 75-79.
doi: 10.3866/PKU.WHXB2007Supp16
URL
|
[4] |
Tran H Y, Täubert C, Wohlfahrt-Mehrens M.Influence of the technical process parameters on structural, mechanical and electrochemical properties of LiNi0.8Co0.15Al0.05O2 based electrodes - A review[J]. Progress in Solid State Chemistry, 2014, 42(4): 118-127.
doi: 10.1016/j.progsolidstchem.2014.04.006
URL
|
[5] |
Chen C H, Liu J, Stoll M E, et al. Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries[J]. Journal of Power Sources, 2004, 128(2): 278-285
doi: 10.1016/j.jpowsour.2003.10.009
URL
|
[6] |
Zhecheva E, Stoyanova R, Alc$\acute{a}$ntara R, et al.Cation order/disorder in lithium transition-metal oxides as insertion electrodes for lithium-ion batteries[J]. Pure and Applied Chemisty, 2002, 74(10): 1885-1894.
|
[7] |
Sasaki T, Nonaka T, Oka H, et al.Capacity-fading mechanisms of LiNiO2-based lithium-ion batteries I. Analysis by electrochemical and spectroscopic examination[J]. Journal of The Electrochemical Society, 2009, 156(4): A289-A293.
doi: 10.1149/1.3076136
URL
|
[8] |
Muto S, Sasano Y, Tatsumi K, et al.Capacity-fading mech-anisms of LiNiO2-based lithium-ion batteries II. Diagnostic analysis by electron microscopy and spectroscopy[J]. Journal of The Electrochemical Society, 2009, 156(5): A371-A377.
doi: 10.1149/1.3076137
URL
|
[9] |
Kang S H, Yoon W S, Nam K W, et al.Investigating the first-cycle irreversibility of lithium metal oxide cathodes for Li batteries[J]. Journal of Materials Science, 2008, 43(14): 4701-4706.
doi: 10.1007/s10853-007-2355-6
URL
|
[10] |
Bang H J, Joachin H, Yang H, et al.Contribution of the structural changes of LiNi0.8Co0.15Al0.05O2 cathodes on the exothermic reactions in Li-ion cells[J]. Journal of The Electrochemical Society, 2006, 153(4): A731-A737.
doi: 10.1149/1.2171828
URL
|
[11] |
Dubarry M, Truchot C, Cugnet M, et al.Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications. part I: initial characterizations[J]. Journal of Power Sources, 2011, 196: 10328-10335.
doi: 10.1016/j.jpowsour.2011.08.077
URL
|
[12] |
Han X B, Ouyang M G, Lu L G, et al.A comparative study of commercial lithium ion battery bycle life in electrical vehicle: aging mechanism identification[J]. Journal of Power Sources, 2014, 251: 38-54.
doi: 10.1016/j.jpowsour.2013.11.029
URL
|
[13] |
Han X B, Lu L G, Zheng Y J, et al.A review on the key issues of the lithium ion battery degradation among the whole life cycle[J]. eTransportation, 2019, 1: 100005.
|
[14] |
Deshpande R, Verbrugge M, Cheng Y, et al.Battery cycle life prediction with coupled chemical degradation and fatigue mechanics[J]. Journal of The Electrochemical Society, 2012, 159(10): A1730-A1738.
|
[15] |
An S J, Li J L, Daniel C, et al.The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling[J]. Carbon, 2016, 105: 52-76.
|
[16] |
Keil P, Jossen A.Calendar aging of NCA lithium-ion batteries investigated by differential voltage analysis and coulomb tracking[J]. Journal of The Electrochemical Society, 2017, 164(1): A6066-A6074.
|
[17] |
Zhu X H, Macía L F, Jaguemont J, Hoog J D, et al.Electrochemical impedance study of commercial LiNi0.80Co0.15-Al0.05O2 electrodes as a function of state of charge and aging[J]. Electrochimica Acta, 2018, 287: 10-20.
|
[18] |
Dubarry M, Svoboda V, Hwu R, et al.Incremental capacity analysis and close-to-equilibrium OCV measurements to quantify capacity fade in commercial rechargeable lithium batteries[J]. Electrochemical and Solid-State Letters, 2006, 9(10): A454-A457.
|
[19] |
Dubarry M, Truchot C, Liaw B Y, et al.Evaluation of commercial lithium-ion cells based on composite positive Eelectrode for plug-in hybrid electric vehicle applications. part II. Degradation mechanism under 2C cycle aging[J]. Journal of Power Sources, 2011, 196: 10336-10343.
|
[20] |
Bloom I, Jansen A N, Abraham D P, et al.Differential voltage analyses of high-power, lithium-ion cells[J]. Journal of Power Sources, 2005, 139: 295-303.
|
[21] |
Dubarry M, Truchot C, Liaw B Y.Synthesize battery degradation modes via a diagnostic and prognostic model[J]. Journal of Power Sources, 2012, 219: 204-216.
|
[22] |
Ma Z Y(马泽宇), Jiang J C(姜久春), Wang Z G(王占国), et al.A research on SOC estimation for LiFePO4 battery with graphite negative electrode based on incremental capacity analysis[J]. Automotive Engineering(汽车工程), 2014, 36(12): 1439-1444.
|
[23] |
Gao Q, Dai H, Wei X, et al.Impedance modeling and aging research of the lithium-ion batteries using the EIS technique[J]. SAE Technical Paper, 2019, 1: 0596.
|
[24] |
Itagaki M, Kobari N, Yotsuda S, et al.LiCoO2 electrode/electrolyte interface of Li-ion rechargeable batteries investigated by in situ electrochemical impedance spectroscopy[J]. Journal of Power Sources, 2005, 148: 78-84.
|
[25] |
Chen C H, Liu J, Amine K.Symmetric cell approach and impedance spectroscopy of high power lithium-ion batteries[J]. Journal of Power Sources, 2001, 96: 321-328.
|
[26] |
Belharouak I.Lithium ion batteries-new developments[M]//Zhuang Q C, Qiu X Y, Xu S D, et al. Diagnosis of electrochemical impedance spectroscopy in lithium-ion batteries. Rijeka: IntechOpen, 2012: 189-226.
|
[27] |
Levi M D, Gamolsky K, Aurbach D, et al.On electrochemical impedance measurements of LixCo0.2Ni0.8O2 and LixNiO2 intercalation electrodes[J]. Electrochimica. Acta, 2000, 45: 1781-1789.
|
[28] |
Sauer D U, Karden E, Fricke B, et al.Charging performance of automotive batteries-an underestimated factor Influencing lifetime and reliable battery operation[J]. Jour-nal of Power Sources, 2007, 168: 22-30.
|
[29] |
Ungurean L, Crstoiu G, Micea M V, et al. Battery state of health estimation: a structured review of models, methods and commercial devices[J]. International Journal of Energy Research, 2017, 41(2): 151-181.
|
[30] |
Albertus P, Couts J, Srinivasan V, et al.A combined model for determining capacity usage and battery size for hybrid and plug-in hybrid electric vehicles[J]. Journal of Power Sources, 2008, 183: 771-782.
|
[31] |
Wu W X, Wu W, Wang S F.Thermal management optimization of a prismatic battery with shape-stabilized phase change material[J]. International Journal of Heat and Mass Transfer, 2018, 121: 967-977.
|
[32] |
Stiaszny B, Ziegler J C, Krauss E E, et al.Electrochemical characterization and post-mortem analysis of aged LiMn2O4-NMC/graphite lithium ion batteries part II: Calendar aging[J]. Journal of Power Sources, 2014, 258: 61-75.
|
[33] |
Kumai K, Miyashiro H, Kobayashi Y, et al.Gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cell[J]. Journal of Power Sources, 1999, 81: 715-719.
|
[34] |
Wu W X, Wu W, Qiu X H, et al.Low-temperature reversible capacity loss and aging mechanism in lithium-ion batteries for different discharge profiles[J]. International Journal of Energy Research, 2019, 43(1): 243-253.
|
[35] |
Dubarry M, Liaw B Y, Chen M S, et al.Identifying battery aging mechanisms in large format Li ion cells[J].Journal of Power Sources, 2011, 196: 3420-3425.
|
[36] |
Huang B, Li X H, Wang Z X, et al.Synjournal of Mg-doped LiNi0.8Co0.15Al0.05O2 oxide and its electrochemical behavior in high-voltage lithium-ion batteries[J]. Ceramics International, 2014, 40(8): 13223-13230.
|
[37] |
Xie H B, Du K, Hu G R, et al.Synjournal of LiNi0.8Co0.15-Al0.05O2 with 5-sulfosalicylic acid as a chelating agent and its electrochemical properties[J]. Journal of Materials Chemistry A, 2015, 3(40): 20236-20243.
|
[38] |
Wu F, Tian J, Su Y F, et al.Effect of Ni2+ content on lithium/nickel disorder for Ni-rich cathode materials[J]. ACS Applied Materials Interfaces, 2015, 7(14): 7702-7708.
URL
pmid: 25811905
|
[39] |
Kosova N V, Devyatkina E T, Kaichev V V.Optimization of Ni2+/Ni3+ ratio in layered Li(Ni,Mn,Co)O2 cathodes for better electrochemistry[J]. Journal of Power Sources, 2007, 174: 965-969.
|
[40] |
Chen M, Zhang Y G, Xing L D, et al.Morphology-conserved transformations of metal-based precursors to hierarchically porous micro-/nanostructures for electrochemical energy conversion and storage[J]. Advance Materials, 2017, 29(48): 1607015-1607042.
|
[41] |
Vetter J, Nov$\acute{a}$k P, Wagner M R, et al.Ageing mechanisms in lithium-ion batteries[J]. Journal of Power Sources, 2005, 147: 269-281.
|
[42] |
Xue N(薛楠), Sui B X(孙丙香), Bai K(白恺), et al.Different state of charge range cycle degradation mechanism of composite material lithium-ion batteries based on incremental capacity analysis[J]. Transaction of China Electrotechnical Society(电工技术学报), 2017, 32(13): 145-152.
|
[43] |
Pastor-Fern$\acute{a}$ndez C, Widanage W D, Chouchelamane, G H, et al.A SoH diagnosis and prognosis method to identify and quantify degradation modes in Li-ion batteries using the IC/DV technique[J]. 6th Hybrid and Electric Vehicles Conference. 2016.
|