电化学(中英文) ›› 2020, Vol. 26 ›› Issue (2): 198-211. doi: 10.13208/j.electrochem.191147
收稿日期:
2019-01-27
修回日期:
2020-03-03
出版日期:
2020-04-28
发布日期:
2020-03-04
通讯作者:
李箭
E-mail:lijian@hust.edu.cn
基金资助:
WEI Tong, LI Jian*(), JIA Li-chao, CHI Bo, PU Jian
Received:
2019-01-27
Revised:
2020-03-03
Published:
2020-04-28
Online:
2020-03-04
Contact:
LI Jian
E-mail:lijian@hust.edu.cn
摘要:
固体氧化物燃料电池(solid oxide fuel cell,SOFC)是通过电化学反应将化石燃料(煤、石油和天然气等)、生物质燃料或其它碳氢燃料中的化学能直接转换为电能的发电装置,能量转换效率更高、污染更低,被公认为21世纪高效绿色能源技术. 但直接以碳氢化合物为燃料时,镍基阳极中容易产生积碳,从而失去电化学催化活性. 在阳极外侧进行一次燃料的预重整是一种行之有效的解决办法,其中高效稳定的重整催化剂至关重要. 本文将结合本课题组的研究进展对钙钛矿催化剂在燃料重整中的应用进行概述,并提出自己相应的观点和展望.
中图分类号:
韦童, 李箭, 贾礼超, 池波, 蒲健. 钙钛矿材料在固体氧化物燃料电池燃料重整中的应用[J]. 电化学(中英文), 2020, 26(2): 198-211.
WEI Tong, LI Jian, JIA Li-chao, CHI Bo, PU Jian. Perovskite Catalysts for Fuel Reforming in SOFC:A Review and Perspective[J]. Journal of Electrochemistry, 2020, 26(2): 198-211.
[1] |
Liu Z W, Hao H, Cheng X , et al. Critical issues of energy efficient and new energy vehicles development in China[J]. Energy Policy, 2018,115:92-97.
doi: 10.1016/j.enpol.2018.01.006 URL |
[2] |
Ming Z, Song X, Ma M J , et al. New energy bases and sustainable development in China: A review[J]. Renewable and Sustainable Energy Reviews, 2013,20:169-185.
doi: 10.1016/j.rser.2012.11.067 URL |
[3] |
Zhu J, Zhou D Q, Pu Z N , et al. A study of regional power generation efficiency in china: based on a non-radial directional distance function model[J]. Sustainability, 2019,11(3):1-18
doi: 10.3390/su11010001 URL |
[4] | Dong Y L, Jiang X, Liang Z H , et al. Coal power flexibility, energy efficiency and pollutant emissions implications in China: A plant-level analysis based on case units[J]. Resources Conservation & Recycling, 2018,134:184-195. |
[5] | Yang Q P, Lin W J, Wang Y M , et al. Industry development and frontier technology roadmap of thermal power generation[J]. Proceedings of the Csee, 2017,37(13):3787-3794. |
[6] |
Bouman E A, Ramirez A, Hertwich E G . Multiregional environmental comparison of fossil fuel power generation-Assessment of the contribution of fugitive emissions from conventional and unconventional fossil resources[J]. International Journal of Greenhouse Gas Control, 2015,33:1-9.
doi: 10.1016/j.ijggc.2014.11.015 URL |
[7] | Zheng Z L( 郑志林), Yuan X Z( 袁晓姿), Yin Y M( 尹屹梅 ), et al. Fuel cells reactor for chemicals and electric energy cogeneration[J]. Journal of Electrochemistry( 电化学), 2018,24(6):615-627. |
[8] | Wei Z D( 魏子栋 ). Special issue: Electrocatalyst and electrocatalysis in fuel cells preface[J]. Journal of Electrochemistry( 电化学), 2016,22(2):99-100. |
[9] |
Kordesch K V, Simader G R . Environmental impact of fuel cell technology[J]. Chemical Reviews, 1995,95(1):191-207.
doi: 10.1021/cr00033a007 URL |
[10] |
Winter M, Brodd R J . What are batteries, fuel cells, and supercapacitors?[J]. Chemical Reviews, 2004,104(10):4245-4270.
doi: 10.1021/cr020730k URL |
[11] |
Carrette L, Friedrich K A, Stimming U . Fuel cells-fundamentals and applications[J]. Fuel Cells, 2001,1(1):5-39.
doi: 10.1002/(ISSN)1615-6854 URL |
[12] |
Brett D J L, Atkinson A, Brandon N P , et al. Intermediate temperature solid oxide fuel cells[J]. Chemical Society Reviews, 2008,37(8):1568-1578.
doi: 10.1039/b612060c URL |
[13] |
Ormerod R M . Solid oxide fuel cells[J]. Chemical Society Reviews, 2003,32(1):17-28.
doi: 10.1039/b105764m URL |
[14] |
Brandon N P, Skinner S, Steele B C H . Recent advances in materials for fuel cells[J]. Annual Review of Materials Research, 2003,33(1):183-213.
doi: 10.1146/annurev.matsci.33.022802.094122 URL |
[15] |
Minh N Q . Solid oxide fuel cell technology-features and applications[J]. Solid State Ionics, 2004,174(1/4):271-277.
doi: 10.1016/j.ssi.2004.07.042 URL |
[16] |
Wachsman E D, Lee K T . Lowering the temperature of solid oxide fuel cells[J]. Science, 2011,334(6058):935-939.
doi: 10.1126/science.1204090 URL |
[17] |
Singh P, Minh N Q . Solid oxide fuel cells: Technology status[J]. International Journal of Applied Ceramic Technology, 2004,1(1):5-15.
doi: 10.1111/ijac.2004.1.issue-1 URL |
[18] |
Yamamoto O . Solid oxide fuel cells: fundamental aspects and prospects[J]. Electrochimica Acta, 2000,45(15/16):2423-2435.
doi: 10.1016/S0013-4686(00)00330-3 URL |
[19] |
Wang W, Su C, Wu Y Z , et al. Progress in solid oxide fuel cells with nickel-based anodes operating on methane and related fuels[J]. Chemical Reviews, 2013,113(10):8104-8151.
doi: 10.1021/cr300491e URL |
[20] |
Mclntosh S, Gorte R J . Direct hydrocarbon solid oxide fuel cells[J]. Chemical Reviews, 2004,104(10):4845-4866.
doi: 10.1021/cr020725g URL |
[21] |
Mcintosh S, Vohs J M, Gorte R J . Effect of precious-metal dopants on SOFC anodes for direct utilization of hydrocarbons[J]. Electrochemical and Solid-State Letters, 2003,6(11):A240-A243.
doi: 10.1149/1.1613231 URL |
[22] |
Gross M D, Vohs J M, Gorte R J . An examination of SOFC anode functional layers based on ceria in YSZ[J]. Journal of The Electrochemical Society, 2007,154(7):B694-B699.
doi: 10.1149/1.2736647 URL |
[23] |
Zhou Z F, Kumar R, Thakur S T . Direct oxidation of waste vegetable oil in solid-oxide fuel cells[J]. Journal of Power Sources, 2007,171(2):856-860.
doi: 10.1016/j.jpowsour.2007.06.210 URL |
[24] |
Cimenti M, Hill J M . Direct utilization of ethanol on ceria-based anodes for solid oxide fuel cells[J]. Asia-Pacific Journal of Chemical Engineering, 2009,4(1):45-54.
doi: 10.1002/apj.v4:1 URL |
[25] |
Fagg D P, Kharton V V, Kovalevsky A V , et al. The stability and mixed conductivity in La and Fe doped SrTiO3, in the search for potential SOFC anode materials[J]. Journal of the European Ceramic Society, 2001,21(10):1831-1835.
doi: 10.1016/S0955-2219(01)00125-X URL |
[26] |
Li X, Zhao H L, Gao F , et al. Synjournal and electrical properties of Co-doped Y0.08Sr0.92TiO3-δ as a potential SOFC anode[J]. Solid State Ionics, 2008,179(27/32):1588-1592.
doi: 10.1016/j.ssi.2007.12.097 URL |
[27] |
Vasechko V, Huang B, Ma Q , et al. Thermomechanical properties of Y-substituted SrTiO3 used as re-oxidation stable anode substrate material[J]. Journal of the European Ceramic Society, 2014,34(15):3749-3754.
doi: 10.1016/j.jeurceramsoc.2014.05.013 URL |
[28] |
Vincent A, Luo J L, Chuang K T , et al. Effect of Ba doping on performance of LST as anode in solid oxide fuel cells[J]. Journal of Power Sources, 2010,195(3):769-774.
doi: 10.1016/j.jpowsour.2009.08.018 URL |
[29] |
Tao S, Irvine J T S . A redox-stable efficient anode for solid-oxide fuel cells[J]. Nature Materials, 2003, 2(5): 320-323.
doi: 10.1038/nmat871 URL |
[30] |
Huang Y H, Dass R I, Xing Z L , et al. Double perovskites as anode materials for solid-oxide fuel cells[J]. Science, 2006,312(5771):254-257.
doi: 10.1126/science.1125877 URL |
[31] |
Zhan Z L, Barnett S A . An octane-fueled solid oxide fuel cell[J]. Science, 2005,308(5723):844-847.
doi: 10.1126/science.1109213 URL |
[32] |
Wang W, Zhou W, Ran R , et al. Methane-fueled SOFC with traditional nickel-based anode by applying Ni/Al2O3 as a dual-functional layer[J]. Electrochemistry Communications, 2009,11(1):194-197.
doi: 10.1016/j.elecom.2008.11.014 URL |
[33] |
Hua B, Li M, Pu J , et al. Enhanced electrochemical performance and carbon deposition resistance of Ni-YSZ anode of solid oxide fuel cells by in situ formed Ni-MnO layer for CH4 on-cell reforming[J]. Journal of Materials Chemistry A, 2014,2(4):1150-1158.
doi: 10.1039/c3ta12766d URL |
[34] |
Hua B, Li M, Zhang W Y , et al. Methane on-cell reforming by alloys reduced from Ni0.5Cu0.5Fe2O4 for direct-hydrocarbon solid oxide fuel cells[J]. Journal of The Electrochemical Society, 2014,161(4):F569-F575.
doi: 10.1149/2.097404jes URL |
[35] |
Hua B, Li M, Pu J , et al. BaZr0.1Ce0.7Y0.1Yb0.1O3-δ enhanced coking-free on-cell reforming for direct-methane solid oxide fuel cells[J]. Journal of Materials Chemistry A, 2014,2(31):12576-12582.
doi: 10.1039/c4ta01989j URL |
[36] |
Hua B, Li M, Luo J L , et al. Carbon-resistant Ni-Zr0.92Y0.08-O2-δ supported solid oxide fuel cells using Ni-Cu-Fe alloy cermet as on-cell reforming catalyst and mixed methane-steam as fuel[J]. Journal of Power Sources, 2016,303:340-346.
doi: 10.1016/j.jpowsour.2015.11.029 URL |
[37] | Gür T M . Comprehensive review of methane conversion in solid oxide fuel cells: Prospects for efficient electricity generation from natural gas[J]. Progress in Energy & Combustion Science, 2016,54:1-64. |
[38] |
Shin H H, McIntosh S . Proton-conducting perovskites as supports for Cr catalysts in short contact time ethane dehydrogenation[J]. ACS Catalysis, 2015,5(1):95-103.
doi: 10.1021/cs501314w URL |
[39] |
James O O, Mandal S, Alele N , et al. Lower alkanes dehydrogenation: Strategies and reaction routes to corresponding alkenes[J]. Fuel Processing Technology, 149:239-255.
doi: 10.1016/j.fuproc.2016.04.016 URL |
[40] |
Bhasin M M, McCain J H, Vora B V , et al. Dehydrogenation and oxydehydrogenation of paraffins to olefins[J]. Applied Catalysis A: General, 2001,221(1/2):397-419.
doi: 10.1016/S0926-860X(01)00816-X URL |
[41] | Galvita V, Siddiqi G, Sun P , et al. Ethane dehydrogenation on Pt/Mg(Al)O and PtSn/Mg(Al)O catalysts[J]. Journal of Catalysis, 2010,271(2):209-219 |
[42] |
Liu S, Chuang K T, Luo J L . Double-layered perovskite anode with in situ exsolution of a Co-Fe alloy to cogenerate ethylene and electricity in a proton-conducting ethane fuel cell[J]. ACS Catalysis, 2016,6(2):760-768.
doi: 10.1021/acscatal.5b02296 URL |
[43] | Liu S, Qing X, Fu X Z , et al. Cogeneration of ethylene and energy in protonic fuel cell with an efficient and stable anode anchored with in-situ exsolved functional metal nanoparticles[J]. Applied Catalysis B: Environmental, 2018,220:283-289. |
[44] | Pindoria R V, Megaritis A, Herod A A , et al. A two-stage fixed-bed reactor for direct hydrotreatment of volatiles from the hydropyrolysis of biomass: effect of catalyst temperature, pressure and catalyst ageing time on product characteristics[J]. Fuel, 1998,77(15):1715-1726. |
[45] |
Pindoria R V, Lim J Y, Hawkes J E , et al. Structural characterization of biomass pyrolysis tars/oils from eucalyptus wood waste: effect of H2 pressure and sample configuration[J]. Fuel, 1997,76(11):1013-1023.
doi: 10.1016/S0016-2361(97)00092-6 URL |
[46] | Nokkosmäki M I, Kuoppala E T, Leppämäki E A , et al. Catalytic conversion of biomass pyrolysis vapours with zinc oxide[J]. Journal of Analytical & Applied Pyrolysis, 2000,55(1):119-131. |
[47] | Adam J, Blazsó M, Mészáros E , et al. Pyrolysis of biomass in the presence of Al-MCM-41 type catalysts[J]. Fuel, 2015,84(12):1494-1502. |
[48] | Wang D, Czernik S, Montané D , et al. Biomass to hydrogen via fast pyrolysis and catalytic steam reforming of the pyrolysis oil or its fractions[J]. Industrial & Engineering Chemistry Research, 1997,36(5):1507-1518. |
[49] | Wang D, Stefan Czernik A, Chornet E . Production of hydrogen from biomass by catalytic steam reforming of fast pyrolysis oils[J]. Energy & Fuels, 1998,12(1):19-24. |
[50] |
Lasa H D, Salaices E, Mazumder J , et al. Catalytic steam gasification of biomass: catalysts, thermodynamics and kinetics[J]. Chemical Reviews, 2011,111(9):5404-5433.
doi: 10.1021/cr200024w URL |
[51] |
Takeguchi T, Kani Y, Yano T , et al. Study on steam reforming of CH4 and C2 hydrocarbons and carbon deposition on Ni-YSZ cermets[J]. Journal of Power Sources, 2002,112(2):588-595.
doi: 10.1016/S0378-7753(02)00471-8 URL |
[52] | Garcia L, French R, Czernik S , et al. Catalytic steam reforming of bio-oils for the production of hydrogen: effects of catalyst composition[J]. Applied Catalysis A: General, 2000,201(2):225-239. |
[53] |
Trane R, Dahl S, Skjøth-Rasmussen M S , et al. Catalytic steam reforming of bio-oil[J]. International Journal of Hydrogen Energy, 2012,37(8):6447-6472.
doi: 10.1016/j.ijhydene.2012.01.023 URL |
[54] | Xu W Q, Yin Y G, Suib S L , et al. Selective conversion of n-butene to isobutylene at extremely high space velocities on ZSM-23 zeolites[J]. Journal of Catalysis, 1994,150(1):34-45. |
[55] | Guell B M, Babich I, Nichols K P , et al. Design of a stable steam reforming catalyst - A promising route to sustainable hydrogen from biomass oxygenates[J]. Applied Catalysis B: Environmental, 2009,90(1):38-44. |
[56] | Basagiannis A C, Verykios X E . Influence of the carrier on steam reforming of acetic acid over Ru-based catalysts[J]. Applied Catalysis B: Environmental, 2008,82(1):77-88. |
[57] |
Fabbri E, Pergolesi D, Traversa E . Cheminform abstract: Materials challenges toward proton-conducting oxide fuel cells: a critical review[J]. Chemical Society Reviews, 2010,39(11):4355-4369.
doi: 10.1039/b902343g URL |
[58] |
Saunders G J, Preece J, Kendall K . Formulating liquid hydrocarbon fuels for SOFCs[J]. Journal of Power Sources, 2004,131(1):23-26.
doi: 10.1016/j.jpowsour.2004.01.040 URL |
[59] | Mcphee W A G, Boucher M, Stuart J , et al. Demonstration of a liquid-tin anode solid-oxide fuel cell (LTA-SOFC) operating from biodiesel fuel[J]. Energy & Fuels, 2009,23(5):5036-5041. |
[60] |
Quang-Tuyen T, Kaida T, Sakamoto M , et al. Effectiveness of paper-structured catalyst for the operation of biodiesel-fueled solid oxide fuel cell[J]. Journal of Power Sources, 2015,283:320-327.
doi: 10.1016/j.jpowsour.2015.02.116 URL |
[61] | Tran Q T, Shiratori Y, Sasaki K . Feasibility of palm-bio-diesel fuel for a direct internal reforming solid oxide fuel cell[J]. International Journal of Energy Research, 2013,37(6):609-616. |
[62] | Dupeyrat C B, Valderrama G, Alexander M J , et al. Pulse study of CO2 reforming of methane over LaNiO3[J]. Applied Catalysis A: General, 2003,248(1/2):143-151. |
[63] |
Ponce S, Peña M A, Fierro J L G . Surface properties and catalytic performance in methane combustion of Sr-substituted lanthanum manganites[J]. Applied Catalysis B: Environmental, 2000,24(3):193-205.
doi: 10.1016/S0926-3373(99)00111-3 URL |
[64] |
Royer S, Duprez D, Can F , et al. Perovskites as substitutes of noble metals for heterogeneous catalysis: dream or reality[J]. Chemical Reviews, 2014,114(20):10292-10368.
doi: 10.1021/cr500032a URL |
[65] | Zhu J J, Li H L, Zhong L Y , et al. Perovskite oxides: pre-paration, characterizations, and applications in heterogeneous catalysis[J]. ACS Catalysis, 2014,4(9):2917-2940. |
[66] | Cohen, Ronald E . Origin of ferroelectricity in perovskite oxides[J]. Nature, 1992,358(6382):136-138. |
[67] | Rajeswari M, Chen C H, Goyal A , et al. Low-frequency optical response in epitaxial thin films of La0.67Ca0.33MnO3 exhibiting colossal magnetoresistance[J]. Applied Physics Letters, 1996,68(25):3555-3557. |
[68] | Yajima T, Kazeoka H, Yogo T , et al. Proton conduction in sintered oxides based on CaZrO3[J]. Solid State Ionics, 1991,47(3/4):271-275. |
[69] | Ibarra J, Várez A, León C , et al. Influence of composition on the structure and conductivity of the fast ionic conductors La2/3-xLi3xTiO3 (0.03≤x≤0.167)[J]. Solid State Ionics, 2000,134(3/4):219-228. |
[70] | Huang K Q, Tichy R, Goodenough J B , et al. Superior perovskite oxide-ion conductor; strontium- and magnesium-doped LaGaO3: III, Performance tests of single ceramic fuel cells[J]. Journal of the American Ceramic Society, 1998,81(10):2581-2585. |
[71] | Yang X F, Wei T, Chi B , et al. Lanthanum manganite-based perovskite as a catalyst for co-production of ethylene and hydrogen by ethane dehydrogenation[J]. Journal of Catalysis, 2019,377:629-637. |
[72] | Irvine J T S, Neagu D, Verbraeken M C , et al. Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers[J]. Nature Energy, 2016,1(1):15014. |
[73] | Vaidya P D, Rodrigues A E . Insight into steam reforming of ethanol to produce hydrogen for fuel cells[J]. Chemical Engineering Journal, 2006,117:39-49. |
[74] | Li N Q, Pu J, Chi B , et al. Ethanol steam reforming with a Ni/BaZr0.1Ce0.7 Y0.1Yb0.1O3-δ catalyst[J]. Materials Today Energy, 2019,12:371-378. |
[75] |
Wei T, Jia L C, Zheng H Y , et al. LaMnO3-based perovskite with in-situ exsolved Ni nanoparticles: a highly active, performance stable and coking resistant catalyst for CO2 dry reforming of CH4[J]. Applied Catalysis A: General, 2018,564:199-207.
doi: 10.1016/j.apcata.2018.07.031 URL |
[76] | Germán S G, Catherine B D, Joël B , et al. Dual active-site mechanism for dry methane reforming over Ni/La2O3 produced from LaNiO3 perovskite[J]. Industrial & Engineering Chemistry Research, 2008,47(23):9272-9278. |
[1] | 邹庚, 冯炜程, 宋月锋, 汪国雄. 固体氧化物电解池阳极材料研究进展[J]. 电化学(中英文), 2023, 29(2): 2215006-. |
[2] | 梁宵, 张可新, 沈雨澄, 孙轲, 石磊, 陈辉, 郑克岩, 邹晓新. 钙钛矿型水氧化电催化剂[J]. 电化学(中英文), 2022, 28(9): 2214004-. |
[3] | 王伟国, 白天, 薛高飞, 叶美丹. CsPbIBr2钙钛矿太阳能电池中通过氧气诱导Spiro-OMeTAD快速氧化[J]. 电化学(中英文), 2021, 27(2): 216-226. |
[4] | 俞成荣, 朱建国, 蒋聪盈, 谷宇晨, 周晔欣, 李卓斌, 邬荣敏, 仲政, 官万兵. 基于电-化-热耦合理论对称双阴极固体氧化物燃料电池堆的电流与温度场数值模拟[J]. 电化学(中英文), 2020, 26(6): 789-796. |
[5] | 李一航, 夏长荣. 固体氧化物电解池直接电解CO2的研究进展[J]. 电化学(中英文), 2020, 26(2): 162-174. |
[6] | 吕喆, 魏波, 王志红, 田彦婷. 单气室固体氧化物燃料电池的材料、微堆结构与相关应用[J]. 电化学(中英文), 2020, 26(2): 230-242. |
[7] | 刘江, 颜晓敏. 直接碳固体氧化物燃料电池[J]. 电化学(中英文), 2020, 26(2): 175-189. |
[8] | 樊赟, 王琦, 李俊, 骆静利, 符显珠. 乙烷脱氢共生电能-增值化学品固体氧化物燃料电池研究进展[J]. 电化学(中英文), 2020, 26(2): 243-252. |
[9] | 张 囡,叶美丹, 温晓茹, 林昌健. 通过磁控溅射金属钛生长金红石型二氧化钛纳米片阵列应用于钙钛矿太阳能电池[J]. 电化学(中英文), 2017, 23(2): 226-237. |
[10] | 乔文远,郭强,李聪,马爽,王福芝,戴松元,谭占鳌. 基于WOx/PEDOT:PSS复合空穴传输层的高效稳定平面异质结钙钛矿太阳电池[J]. 电化学(中英文), 2016, 22(4): 382-389. |
[11] | 刘晓东,李永舫. 阴极界面修饰层改善平面p-i-n型钙钛矿太阳能电池的光伏性能[J]. 电化学(中英文), 2016, 22(4): 315-331. |
[12] | 吕尧,黄波*,顾习之,候春一,胡一星,王晓颖,朱新坚. 固体氧化物燃料电池Cu-LSCM-CeO2/LSCM-YSZ/Ni-ScSZ复合阳极制备及性能[J]. 电化学(中英文), 2014, 20(5): 470-475. |
[13] | 李扬,黄波*,袁梦,张志秋,刘宗尧,唐旭晨,朱新坚. 中温固体氧化物燃料电池LaNi0.6Fe0.4O3-δ-Gd0.2Ce0.8O2梯度复合阴极制备及交流阻抗性能[J]. 电化学(中英文), 2014, 20(1): 45-50. |
[14] | 任睿轩, 黄波, 朱新坚, 胡一星, 丁小益, 刘宗尧, 刘烨彬. Gd0.2Ce0.8O2包覆LaNi0.6Fe0.4O3-δ阴极制备及性能[J]. 电化学(中英文), 2013, 19(3): 275-280. |
[15] | 佟泽, 尹屹梅, 殷洁炜, 马紫峰. 新型ITSOFC复合电解质氧化铈-硫酸盐的制备和表征[J]. 电化学(中英文), 2013, 19(3): 210-214. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||