电化学(中英文) ›› 2020, Vol. 26 ›› Issue (2): 212-229. doi: 10.13208/j.electrochem.191144
收稿日期:
2019-11-21
修回日期:
2020-03-28
出版日期:
2020-04-28
发布日期:
2020-04-28
通讯作者:
于波
E-mail:cassy_yu@tsinghua.edu.cn
基金资助:
Received:
2019-11-21
Revised:
2020-03-28
Published:
2020-04-28
Online:
2020-04-28
Contact:
YU Bo
E-mail:cassy_yu@tsinghua.edu.cn
摘要:
固体氧化物电解池是一种先进的能量转换装置,具有高效、简单、灵活、环境友好等特点,是目前国际能源领域的研究热点. 本文对高温固体氧化物电解制氢技术的基本原理、关键材料、系统组成、发展历程及国内外研究现状等进行了总结和分析,小结了该技术发展面临的主要挑战,简述了清华大学在高温固体氧化物电解领域近期的研究进展,并对其未来应用前景进行了展望.
中图分类号:
张文强, 于波. 高温固体氧化物电解制氢技术发展现状与展望[J]. 电化学(中英文), 2020, 26(2): 212-229.
ZHANG Wen-qiang, YU Bo. Development Status and Prospects of Hydrogen Production by High Temperature Solid Oxide Electrolysis[J]. Journal of Electrochemistry, 2020, 26(2): 212-229.
表1
三种水电解技术典型制氢系统主要性能对照表
Technical parameter | AEC | PEMEC | SOEC |
---|---|---|---|
LHV/% | 65~70[ | 56~60[ | 96[ |
Specific energy consumption/(kWh·Nm-3) | 4.3~4.65[ | 5[ | 3.7[ |
Nominal power/MW | 6[ | 1.5[ | 0.15[ |
Load flexibility/% | 25~100[ | 1~100[ | -100~100[ |
Hot start from min to max power/min | 1~5[ | < 1[ | > 60[ |
Degradation rate/(%kh-1) | 0.25~1.5[ | 0.5~2.5[ | 0.6[ |
Lifetime/h | 55000~96000[ | 60000~100000[ | 16000[ |
[1] | 国家发展改革委,国家能源局. 《能源发展“十三五”规划》[EB/OL]. [ 2017- 01- 17] . |
[2] | Buttler A, Spliethoff H . Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review[J]. Renewable and Sunstainable Reviews, 2018,82:2440-2454. |
[3] |
Ebbesen S D, Jensen S H, Hauch A et al, High temperature electrolysis in alkaline cells, solid proton conducting cells, and solid oxide cells[J]. Chemical Reviews, 2014,114(21):10697-10734.
doi: 10.1021/cr5000865 URL |
[4] | Zheng Y, Wang J C, Yu B , et al, A review of high temperature co-electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide electrolysis cells (SOECs): advanced materials and technology[J]. Chemical Society Reviews, 2017,46(5):1427-1463. |
[5] | Zhang W Q( 张文强), Yu B( 于波), Chen J( 陈靖 ), et al. Hydrogen production through sofid oxide electrolysis at elevated temperatures[J]. Progress in Chemistry( 化学进展), 2008,20(5):778-787. |
[6] |
Bi L. Boulfrad S, Traversa E . Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides[J]. Chemical Society Reviews, 43(24):8255-8270.
doi: 10.1039/C4CS00194J URL |
[7] |
Lei L B, Zhang J H, Yuan Z H , et al. Progress report on proton conducting solid oxide electrolysis cells[J]. Advanced Functional Materials, 2019,29(37):1903805.
doi: 10.1002/adfm.v29.37 URL |
[8] |
Kim J, Jun A, Gwon O , et al. Hybrid-solid oxide electrolysis cell: A new strategy for efficient hydrogen production[J]. Nano Energy, 2018,44:121-126.
doi: 10.1016/j.nanoen.2017.11.074 URL |
[9] | Liu M Y, Yu B, Xu J M, Chen J . Thermodynamic analysis of the efficiency of high-temperature steam electrolysis system for hydrogen production[J]. Journal of Power Sour-ces, 2008; 177:493-499. |
[10] | Liu M Y, Yu B, Chen J , et al. Two-dimensional simula-tion and critical efficiency analysis of high-temperature steam electrolysis system for hydrogen production[J]. Journal of Power Sources, 2008,183(2):708-712. |
[11] | Zhang W Q, Yu B, Xu J M . Efficiency evaluation of high-temperature steam electrolytic systems coupled with different nuclear reactors[J]. International Journal of Hydrogen Energy, 2012,37:12060-12068. |
[12] | Herring J S, O’Brien J E, Stoot C M , et al. Progress in high-temperature electrolysis for hydrogen production using planar SOFC technology[J]. International Journal of Hydrogen Energy, 2007,32:440-450. |
[13] | International Energy Agency. Technology roadmap hydrogen and fuel cells[EB/OL]. June, 2015. . |
[14] | Hydrogenics. Renewable hydrogen solutions[EB/OL]. 2016. . |
[15] | Sunfire GmbH. RSOC Electrolyzer Factsheet[EB/OL]. 2016. . |
[16] |
Felgenhauer M, Hamacher T . State-of-the-art of commercial electrolyzers and onsite hydrogen generation for logistic vehicles in South Carolina[J]. International Journal of Hydrogen Energy, 2015,40(5):2084-2090.
doi: 10.1016/j.ijhydene.2014.12.043 URL |
[17] |
Stoots C, O’Brien J, Hartvigsen J . Results of recent high temperature coelectrolysis studies at the Idaho National Laboratory[J]. International Journal of Hydrogen Energy, 2009,34(9):4208-4215.
doi: 10.1016/j.ijhydene.2008.08.029 URL |
[18] | Raballo S, Llera J, Pérez A, Bolcich J C . Clean hydrogen production in Patagonia Argentina[C]// Detlef Stolten, Thomas Grube (Eds.): 18th World Hydrogen Energy Con-ference 2010-WHEC 2010, Proceedings of the WHEC, May 16-21. 2010: 11-16. |
[19] |
David M, Ocampo-Martinez C, Sanchez-Pena R . Advances in alkaline water electrolyzers: A review[J]. Journal of Energy Storage, 2019,23:392-403.
doi: 10.1016/j.est.2019.03.001 URL |
[20] | Babic U, Suermann M, Buehi F N , et al, Review-identifying critical gaps for polymer electrolyte water electrolysis development[J]. Journal of The Electrochemical Society, 2017,164(4):F387-F399. |
[21] | ZhangX R( 张旭锐), Shao X L( 邵晓琳), Yi J( 易金 ), et al. Statuses, challenges and strategies in the development of low-temperature carbon dioxide electroreduction technology[J]. Journal of Electrochemistry( 电化学), 2019,25(4):413-425. |
[22] | Wang Z( 王振), Yu B( 于波), Zhang W Q( 张文强 ), et al. Clean fuel production through high temperature electrolysis of H2O and CO2[J]. Progress in Chemistry( 化学进展), 2013,25(7):1229-1236. |
[23] | Gomez S Y, Hotza D . Current developments in reversible solid oxide fuel cells[J]. Renewable & Sustainable Energy Reviews, 2016,61:155-174. |
[24] | Zhao C H( 赵晨欢), Zhang W Q( 张文强), Yu B( 于波 ), et al. Solid oxide electrolyzer[J]. Progress in Chemistry( 化学进展), 2016,28(8):1265-1288. |
[25] | Danish company to build fuel-cell pilot plant [EB/OL]. . |
[26] | Stoots C M, O'Brien J E, Herring J S , et al. Idaho national laboratory experimental research in high temperature electrolysis for hydrogen and syngas production[C]// The American Society of Mechanical Engineers, Proceedings of the 4th International Topical Meeting on High Temperature Reactor Technology, HTR2008, September 28-October1, 2008, Washington, USA, HTR, 2008: 497-508. |
[27] | Borm O . Steam electrolysis as the core technology for sector coupling in the energy transition[EB/OL]. . |
[28] |
Nernst W . Uber Die Elektrolytische Leitung Fester Korper Bei Sehr Hohen Temperaturen[J]. Z Elektrochem, 1899,6:41-43.
doi: 10.1002/bbpc.v6:2 URL |
[29] |
Spacil H S, Tedmon C S . Electrochemical dissociation of water vapor in solid oxide electrolyte cells I. Thermodynamics and cell characteristics[J]. Journal of The Electrochemical Society, 1969,116:1618-1626.
doi: 10.1149/1.2411642 URL |
[30] | Spacil H S, Tedmon C S . Electrochemical dissociation of water vapor in solid oxide electrolyte cells II. Materials, fabrication, and properties[J]. Journal of The Electroche-mical Society, 1969,116:1627-1633. |
[31] |
Döenitz W, Eedle E . High-temperature electrolysis of water vapor status of development and perspective for application[J]. International Journal of Hydrogen Energy, 1985,10:291-295.
doi: 10.1016/0360-3199(85)90181-8 URL |
[32] | Herring J S, Lessing P, O'Brien J E , et al, hydrogen production through high-temperature electrolysis in a solid oxide cell[C]// Argonne National Laboratory, Second Information Exchange Meeting on Nuclear Production of Hydrogen, Illinois, USA, 2 and 3 October, 2003. |
[33] | O’Brien J, Boardman R . high temperature electrolysis test stand[EB/OL]. Idaho National Laboratory June 14, 2018. . |
[34] | Hi2H2. Highly efficient, high temperature, hydrogen production by water electrolysis[EB/OL]. 2004, . |
[35] |
Tsimis D, Aguilo-Rullan A, Atanasiu M , et al. The status of SOFC and SOEC R&D in the european fuel cell and hydrogen joint undertaking programme[J]. ECS Transactions, 2019,91(1):9-26.
doi: 10.1149/09101.0009ecst URL |
[36] | Yu B, Zhang W Q, Chen J , et al. Advance on highly efficient hydrogen production by high temperature steam electrolysis[J]. Science in China Series B: Chemistry, 2008,51(4):289-304. |
[37] |
Yu B, Zhang W Q, Xu J M , et al. Status and research of highly efficient hydrogen production through high temperature steam electrolysis at INET[J]. International Journal of Hydrogen Energy, 2010,35(7):2829-2835.
doi: 10.1016/j.ijhydene.2009.05.037 URL |
[38] | U.S. DOE Nuclear Energy Research Advisory Committee and the generation IV International Forum. A Technology Roadmap for Generation IV Nuclear Energy System[EB/OL]. 2002, . |
[39] |
Wang X( 王雪), Zhang W Q( 张文强), Yu B( 于波 ), et al. SOC Stack impedance characterization and identification based on DRT and ADIS methods[J]. Journal of Inorganic Materials( 无机材料学报), 2016,31(12):1279-1288.
doi: 10.15541/jim20150652 URL |
[40] | Li Y F, Zhang W Q, Zheng Y , et al. Controlling cation segregation in perovskite based electrodes for high electro-catalytic activity and durability[J]. Chemical Society Reviews, 2017,46(20):6345-6378. |
[41] |
Wu T, Zhang W Q, Yu B , et al. Micro-/nanohoneycomb solid oxide electrolysis cell anodes with ultralarge current tolerance[J]. Advanced Energy Materials, 2018,8:1802203.
doi: 10.1002/aenm.v8.33 URL |
[42] | Li Y F, Zhang W Q, Wu T , et al. Segregation induced self-assembly of highly active perovskite for rapid oxygen reduction reaction[J]. Advanced Energy Materials, 2018,8:1801893. |
[43] |
Zheng Y, Li Y F, Wu T , et al. Controlling crystal orientation in multilayered heterostructures toward high electro-catalytic activity for oxygen reduction reaction[J]. Nano Energy, 2019,62:521-529.
doi: 10.1016/j.nanoen.2019.05.069 URL |
[44] |
Yue W X, Li Y F, Zheng Y , et al. Enhancing coking resistance of Ni/YSZ electrodes: In situ characterization, mechanism research, and surface engineering[J]. Nano Energy, 2019,62:64-78 .
doi: 10.1016/j.nanoen.2019.05.006 URL |
[45] | Zheng Y, Zhang W Q, Li Y F , et al. Energy related CO2 conversion and utilization: Advanced materials/nanomaterials, reaction mechanisms and technologies[J]. Nano Energy, 2017,40:512-539. |
[46] | Zheng Y, Li Y F, Wu T et al. Oxygen reduction kinetic enhancements of intermediate-temperature SOFC cathodes with novel Nd0.5Sr0.5CoO3-δ/Nd0.8Sr1.2CoO4±δ heterointerfaces[J]. Nano Energy, 2018,51:711-720. |
[47] | Zhao C H, Li Y F, Zhang W Q , et al. Heterointerface engineering for enhancing the electrochemical performance of solid oxide cells[J]. Energy & Environmental Science, 2019,13(1):53-85. |
[48] | Wang S R, Hao X, Zhan W T . Research on a low temperature reversible solid oxide cell[J]. International Journal of Hydrogen Energy, 2017,42(50):29881-29887. |
[49] | Fan H, Han M F . Electrochemical stability of Sm0.5Sr0.5-CoO3-delta-infiltrated YSZ for solid oxide fuel cells/electrolysis cells[J]. Faraday Discussions, 2015,182:477-491. |
[50] | Zheng Y F, Li Q S, Guan W B , et al. Investigation of 30-cell solid oxide electrolyzer stack modules for hydrogen production[J]. Ceramics International, 2014,40(4):5801-5809. |
[51] |
Chen X B, Guan C Z, Xiao G P , et al. Syngas production by high temperature steam/CO2 coelectrolysis using solid oxide electrolysis cells[J]. Faraday Discussions, 2015,182:341-351.
doi: 10.1039/C5FD00017C URL |
[52] | Boardman R D . Figures of merit for nuclear/hydrogen hybrid systems[EB/OL]. 2017, . |
[53] | Blum L, Haart B, Malzbender J , et al. Recent results in Jülich solid oxide fuel cell technology development[J]. Journal of Power Sources, 2013,241:477-485. |
[54] |
Minh N Q, Lee Y H, Tran T Q , et al. Development of a versatile, high-performance solid oxide fuel cell stack technology[J]. ECS Transactions, 2019,91(1):133-138.
doi: 10.1149/09101.0133ecst URL |
[55] |
Hagen A, Frandsen H L . Solid oxide development status at DTU energy[J]. ECS Transactions, 2019,91(1):235-245.
doi: 10.1149/09101.0235ecst URL |
[56] |
Adler S B . Factors governing oxygen reduction in solid oxide fuel cell cathodes[J]. Chemical Reviews, 2004,104(10):4791-4844.
doi: 10.1021/cr020724o URL |
[57] | Graves C, Ebbesen S D, Jensen S H , et al. Eliminating degradation in solid oxide electrochemical cells by reversible operation[J]. Nature Materials, 2014,14(2):239-244. |
[58] | Zhu T L, Troiani H E, Mogni L V , et al. Ni-substituted Sr(Ti,Fe)O3 SOFC anodes: Achieving high performance via metal alloy nanoparticle exsolution[J]. Joule, 2018,2(3):478-496. |
[59] |
Suntivich J, May K J, Gasteiger H A , et al. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles[J]. Science, 2011,334(6061):1383-1385.
doi: 10.1126/science.1212858 URL |
[60] |
Wachsman E D, Lee K T . Lowering the temperature of solid oxide fuel cells[J]. Science, 2011,334(6058):935-939.
doi: 10.1126/science.1204090 URL |
[61] |
Zhou Y, Guan X F, Zhou H , et al. Strongly correlated perovskite fuel cells[J]. Nature, 2016,534(7606):231-234.
doi: 10.1038/nature17653 URL |
[62] | Jiang Y X( 姜艳霞), Tian N( 田娜), Zhou Z Y( 周志有 ), et al. Progresses in electrocatalysis of nanomaterials tuning the surface structure and property of electrocatalysts[J]. Journal of Electrochemistry( 电化学), 2009,15(4):359-370. |
[63] | Irvine J T S, Neagu D, Verbraeken M C , et al. Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers[J]. Nature Energy, 2016,1:15014. |
[64] | Wang Y, Li W Y, Ma L , et al. Degradation of solid oxide electrolysis cells: Phenomena, mechanisms, and emerging mitigation strategies-A review[J]. Journal of Materials Science & Technology, 2019,23(1):109-123. |
[65] | Chen K, Jiang S P . Review-materials degradation of solid oxide electrolysis cells[J]. Journal of The Electrochemical Society, 2019,163(11):F3070-F3083. |
[66] | Jun A, Ju Y W, Kim G . Solid oxide electrolysis: concluding remarks[J]. Faraday Discussions, 2015,182:519-528. |
[67] | Knibbe R, Traulsen M L, Hauch A , et al. Solid oxide ele-ctrolysis cells: Degradation at high current densities[J]. Journal of The Electrochemical Society, 2010,157(8):B1209-B1217. |
[68] |
Virkar A V . Mechanism of oxygen electrode delamination in solid oxide electrolyzer cells[J]. International Journal of Hydrogen Energy, 2010,35(18):9527-9543.
doi: 10.1016/j.ijhydene.2010.06.058 URL |
[69] |
Kiebach R. Norrman K, Chatzichristodoulou C , et al. TOF-SIMS characterization of impurity enrichment and redistribution in solid oxide electrolysis cells during operation[J]. Dalton Transactions, 2014,43(40):14949-14958.
doi: 10.1039/c4dt01053a URL |
[70] |
Schefold J, Brisse A, Zahid M . Electronic conduction of yttria-stabilized zirconia electrolyte in solid oxide cells operated in high temperature water electrolysis[J]. Journal of The Electrochemical Society, 2009,156(8):B897-B904.
doi: 10.1149/1.3138701 URL |
[71] |
Wood A, He H P, Joia T , et al. Communication-electrolysis at high efficiency with remarkable hydrogen production rates[J]. Journal of The Electrochemical Society, 2016,163(5):F327-F329.
doi: 10.1149/2.0341605jes URL |
[72] |
Hong J, Kim H J, Park S Y , et al. Electrochemical performance and long-term durability of a 200 W-class solid oxide regenerative fuel cell stack[J]. International Journal of Hydrogen Energy, 2014,39(35):20819-20828.
doi: 10.1016/j.ijhydene.2014.06.114 URL |
[73] | Fang Q, Blum L, Menzle N H . Performance and degradation of solid oxide electrolysis cells in stack[J]. Journal of The Electrochemical Society, 2015,16(8):F907-F912. |
[74] | Arias J . Hydrogen and fuel cells in Japan[EB/OL]. 2019, . |
[75] | Yildiz B, Kazimi M S . Efficiency of hydrogen production systems using alternative nuclear energy technologies[J]. International Journal of Hydrogen Energy, 2006,31(1):77-92. |
[76] | Stetson N . H2 Fuel R&D Overview[EB/OL]. 2019, . |
[77] | Buttler A, Spliethoff H . Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review[J]. Renewable & Sustainable Energy Reviews, 2018,82:2440-2454. |
[78] | Gotz M, Lefebvre J, Mors F , et al. Renewable power-to-gas: A technological and economic review[J]. Renewable Energy, 2016,85:1371-1390. |
[79] |
Costa R, Due?as A D M, Futter G , et al. Solid oxide cells for power-to-X: Application & challenges[J]. ECS Transactions, 2019,91(1):2527-2536.
doi: 10.1149/09101.2527ecst URL |
[80] |
Schiermeier Q . Renewable power: Germany’s energy gamble[J]. Nature, 2013,496(7444):156-158.
doi: 10.1038/496156a URL |
[81] | Smith J D . Innovative management of carbon emissions from fossil plants[C]// The Advanced Combustion Engineering Research Center, 24th Annual ACERC Conference, February 25-26, 2010, Provo, UT. |
[82] |
Posdziech O, Geiβler T, Schwarze F K , et al. System development and demonstration of large-scale high-temperature electrolysis[J]. ECS Transactions, 2019,91(1):2537-2546.
doi: 10.1149/09101.2537ecst URL |
[83] | Schwarze K, Posdziech O, Mermelstein J , et al. Operational results of an 150/30 kW RSOC system in an industrial environment[J]. Fuel Cells, 2019,19(4):374-380. |
[1] | 马海斌, 周晓延, 李嘉艺, 程洪飞, 马吉伟. 用于促进碱性介质中析氢反应动力学的异质结构电催化剂的合理设计[J]. 电化学(中英文), 2024, 30(1): 2305101-. |
[2] | 邹庚, 冯炜程, 宋月锋, 汪国雄. 固体氧化物电解池阳极材料研究进展[J]. 电化学(中英文), 2023, 29(2): 2215006-. |
[3] | 冯辛, 刘博文, 郭可鑫, 范林丰, 王根香, 次素琴, 温珍海. 基于阳极甘油氧化电催化的碱/酸混合电解制氢研究[J]. 电化学(中英文), 2023, 29(2): 2215005-. |
[4] | 汪恒吉, 陈文国, 全周益, 赵凯, 孙毅飞, 陈旻, 奥坚科·弗拉基米尔. 多孔陶瓷支撑型管式固体氧化物电解池性能研究[J]. 电化学(中英文), 2023, 29(12): 2204131-. |
[5] | 谢文富, 邵明飞. 碱性电解水高效制氢[J]. 电化学(中英文), 2022, 28(10): 2214008-. |
[6] | 李浩秒, 周浩, 王康丽, 蒋凯. 液态金属电极的电化学储能应用[J]. 电化学(中英文), 2020, 26(5): 663-682. |
[7] | 杨裕生. 电化学储能研究22年回顾[J]. 电化学(中英文), 2020, 26(4): 443-463. |
[8] | 叶灵婷, 谢奎. 氧离子传导型固体氧化物电解池燃料电极的研究进展[J]. 电化学(中英文), 2020, 26(2): 253-261. |
[9] | 李一航, 夏长荣. 固体氧化物电解池直接电解CO2的研究进展[J]. 电化学(中英文), 2020, 26(2): 162-174. |
[10] | 吴 芝, 孙 岚, 林昌健. 太阳能光催化制氢研究进展[J]. 电化学(中英文), 2019, 25(5): 529-552. |
[11] | 唐堂,江文杰,牛帅,胡劲松. 高性能析氧电催化剂的设计策略[J]. 电化学(中英文), 2018, 24(5): 409-426. |
[12] | 马元元,郭昭薇,王永刚,夏永姚. 电池电极反应的新应用:分步法电解制氢气[J]. 电化学(中英文), 2018, 24(5): 444-454. |
[13] | 王晓敏, 窦湟琳, 田 真, 张久俊. 硫化镍/三维网络石墨烯复合材料制备及其在高性能超级电容器的应用研究[J]. 电化学(中英文), 2017, 23(2): 217-225. |
[14] | 李 泓, 吕迎春. 电化学储能基本问题综述[J]. 电化学(中英文), 2015, 21(5): 412-424. |
[15] | 冷文华. 结合光电化学和瞬态吸收光谱技术研究光电化学分解水载流子动力学[J]. 电化学(中英文), 2014, 20(4): 316-322. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||