[1] Fan C H, Plaxco K W, Heeger A J. Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA[J]. PNAS, 2003, 100: 9134-9137. [2] Xiao Y, Lubin A A, Baker B R, et al. Single-step electronic detection of femtomolar DNA by target-induced strand displacement in an electrode-bound duplex[J]. PNAS , 2006, 103 (45): 16677-16680.[3] Zhang Y L, Wang Y, Wang H B, et al. Electrochemical DNA biosensor based on the proximity-dependent surface hybridization assay[J]. Anal Chem, 2009, 81: 1982-1987.[4] Zhang J, Song S P, Zhang L Y, et al. Sequence-specific detection of femtomolar DNA via a chronocoulometric DNA sensor (CDS): effects of nanoparticle-mediated amplification and nanoscale control of DNA assembly at electrodes[J]. J Am Chem Soc, 2006, 128: 8575-8580.[5] Patolsky F, Lichtenstein A, Willner I. Highly sensitive amplified electronic detection of DNA by biocatalyzed precipitation of an insoluble production to electrodes[J]. Chem Eur J, 2003, 9: 1137-1145.[6] Mao X, Jiang J H, Xu X M, et al. Enzymatic ampli?cation detection of DNA based on “molecular beacon” biosensors[J]. Biosens Bioelectron, 2008, 23: 1555-1561.[7] Kruglyak L, Nickerson D A. Variation is the spice of life[J]. Nat Genet, 2001, 27: 234-236.[8] Sachidanandam R, Weissman D, Schmidt S C, et al. A map of human genomesequence variation containing 1.42 million single nucleotide polymorphisms[J]. Nature, 2001, 409: 928–933.[9] Venter J C, Adams M D, Myers E W, et al. The sequence of the human genome[J]. Science, 2001, 291: 1304–1351.[10] Wu Z S, Jiang J H, Shen G L, et al. Highly sensitive DNA detection and point mutation identification: an electrochemical approach based on the combined use of ligase and reverse molecular beacon[J]. Hum Mutat, 2007, 28: 630-637.[11] Huang Y, Zhang Y L, Xu X M, et al. Highly speci?c and sensitive electrochemical genotyping via gap ligation reaction and surface hybridization detection[J]. J Am Chem Soc, 2009, 131: 2478-2480.[12] Zhang S B, Wu Z S, Shen G L, et al. A label-free strategy for SNP detection with high ?delity and sensitivity based on ligation-rolling circle ampli?cation and intercalating of methylene blue[J]. Biosens Bioelectron, 2009, 24: 3201-3207.[13] Feng K J, Zhao J J, Wu Z S, et al. High-sensitive electrochemical detection of point mutation based on polymerization-induced enzymatic ampli?cation[J]. Biosens Bioelectron, 2011, 26: 3187-3191.[14] Hu R, Wu Z S, Zhang S B, et al. Robust electrochemical system for screening single nucleotide polymorphisms[J]. Chem Commun, 2011, 47: 1294-1296.[15] Chen H, Liu X J, Liu Y L, et al. Electro- chemical scanning of DNA point mutations via MutS protein-mediated mismatch recognition[J]. Biosens Bioelectron, 2009, 24: 1955-1961.[16] Ellington A D, Szostak J W. In vitro selection of RNA molecules that bind specific ligands[J]. Nature, 1990, 346: 818-822.[17] Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment RNA ligands to bacteriophage T4 DNA polymerase[J]. Science, 1990, 249: 505-510.[18] Xiao Y, Lubin A A, Heeger A J, et al. Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor[J]. Angew Chem Int Ed, 2005, 44: 5456-5459.[19] Wu Z S, Zheng F, Shen G L, et al. A hairpin aptamer-based electrochemical biosensing platform for the sensitive detection of proteins[J]. Biomaterials, 2009, 30: 2950-2955.[20] Wu Z S, Chen C R, Shen G L, et al. Reversible electronic nanoswitch based on DNA G-quadruplex conformation: a platform for single-step, reagentless potassium detection[J]. Biomaterials, 2008, 29: 2689–2696.[21] Zhang S B, Hu R, Hu P, et al. Blank peak current-suppressed electrochemical aptameric sensing platform for highly sensitive signal-on detection of small molecule[J]. Nueleic Acids Res, 2010, 38: e185.[22] He J L, Yang Y F, Shen G L, et al. Electrochemical aptameric sensor based on the Klenow fragment polymerase reaction for cocaine detection[J]. Biosens Bioelectron, 2011, 26: 4222-4226.[23] Wu Z S, Guo M M, Zhang S B, et al. Reusable electrochemical sensing platform for highly sensitive detection of small molecules based on structure-switching signaling aptamers[J]. Anal Chem, 2007, 79: 2933-2939. [24] Zhang Y L, Huang Y, Jiang J H, et al. Electrochemical aptasensor based on proximity-dependent surface hybridization assay for single-step, reusable, sensitive protein detection[J]. J Am Chem Soc, 2007, 129: 15448-15449.[25] Zhou L, Ou L J, Chu X, et al. Aptamer-based rolling circle amplification: a platform for electrochemical detection of protein[J]. Anal Chem, 2007, 79: 7492-7500.[26] Gong H, Li X H. Y-type, C-rich DNA probe for electrochemical detection of silver ion and cysteine[J]. Analyst, 2011, 136: 2242-2246.[27] Ono A, Cao S Q, Togashi H, et al. Specific interactions between silver(I) ions and cytosine-cytosine pairs in DNA duplexes[J]. Chem Commun, 2008: 4825-4827.[28] Miyake Y, Togashi H, Tashiro M, et al. MercuryII-mediated formation of thymine HgII thymine base pairs in DNA duplexes[J]. J Am Chem Soc, 2006, 128: 2172-2173.[29] Tanaka Y, Oda S, Yamaguchi H, et al. 15N-15N J-coupling across HgII: direct observation of HgII-mediated T-T base pairs in a DNA duplex[J]. J Am Chem Soc, 2007, 129: 244-245.[30] Liu S J, Nie H G, Jiang J H, et al. Electrochemical sensor for mercury(II) based on conformational switch mediated by interstrand cooperative coordination[J]. Anal Chem, 2009, 81: 5724-5730.[31] Wu D H, Zhang Q, Chu X, et al. Ultrasensitive electrochemical sensor for mercury(II) based on target-induced structure-switching DNA[J]. Biosens Bioelectron, 2010, 25: 1025-1031.[32] Kong R M, Zhang X B, Zhang L L, et al. An ultrasensitive electrochemical ‘‘turn-on’’ label-free biosensor for Hg2+ with AuNP-functionalized reporter DNA as a signal ampli?er[J]. Chem Commun, 2009: 5633-5635.[33] Zhang Z P, Tang A M, Liao S Z, et al. Oligonucleotide probes applied for sensitive enzyme-ampli?ed electrochemical assay of mercury(II) ions[J]. Biosens Bioelectron, 2011, 26: 3320-3324.[34] Wu Z, Zhen Z, Jiang J H, et al. Terminal protection of small-molecule-linked DNA for sensitive electrochemical detection of protein binding via selective carbon nanotube assembly[J]. J Am Chem Soc, 2009, 131: 12325-12332. |