[1] Roduner E. Size matters: Why nanomaterials are different[J]. Chemical Society Reviews, 2006, 35(7): 583-592.
[2] Zhou Z Y, Tian N, Li J T, et al. Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage[J]. Chemical Society Reviews, 2011, 40(7): 4167-4185.
[3] An K, Somorjai G A. Size and shape control of metal nanoparticles for reaction selectivity in catalysis[J]. ChemCatChem, 2012, 4(10): 1512-1524.
[4] Zhang L, Niu W X, Xu G B. Synthesis and applications of noble metal nanocrystals with high-energy facets[J]. Nano Today, 2012, 7(6): 586-605.
[5] Tian N, Zhou Z Y, Sun S G, et al. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity[J]. Science, 2007, 316(5825): 732-735.
[6] Ma Y Y, Kuang Q, Jiang Z Y, et al. Synthesis of trisoctahedral gold nanocrystals with exposed high-index facets by a facile chemical method[J]. Angewandte Chemie International Edition, 2008, 47(46): 8901-8904.
[7] Duan H H, Yan N, Yu R, et al. Ultrathin rhodium nanosheets[J]. Nature Communications, 2014, 5: 3093.
[8] Zhang L, Roling L T, Wang X, et al. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets[J]. Science, 2015, 349(6246): 412-416.
[9] Zeb Gul Sial M A, Ud Din M A, Wang X. Multimetallic nanosheets: synthesis and applications in fuel cells[J]. Chemical Society Reviews, 2018, 47(16): 6175-6200.
[10] Jia Y Y, Jiang Y Q, Zhang J W, et al. Unique excavated rhombic dodecahedral PtCu3 alloy nanocrystals constructed with ultrathin nanosheets of high-energy {110} facets[J]. Journal of the American Chemical Society, 2014, 136(10): 3748-3751.
[11] Chen Q L, Jia Y Y, Xie S F, et al. Well-faceted noble-metal nanocrystals with nonconvex polyhedral shapes[J].Chemical Society Reviews, 2016, 45(11): 3207-3220.
[12] Lofton C, Sigmund W. Mechanisms controlling crystal habits of gold and silver colloids[J]. Advanced Functional Materials, 2005, 15(7): 1197-1208.
[13] Xin W, Severino J, De Rosa I M, et al. One-step synthesis of tunable-size gold nanoplates on graphene multilayers[J]. Nano Letters, 2018, 18(3): 1875-1881.
[14] Huang X Q, Tang S H, Mu X L, et al. Freestanding palladium nanosheets with plasmonic and catalytic properties[J]. Nature Nanotechnology, 2011, 6(1): 28-32.
[15] Xiong Y J, McLellan J M, Chen J Y, et al. Kinetically controlled synthesis of triangular and hexagonal nano-plates of palladium and their SPR/SERS properties[J]. Journal of the American Chemical Society, 2005, 127(48): 17118-17127.
[16] An J, Tang B, Ning X H, et al. Photoinduced shape evolution: From triangular to hexagonal silver nanoplates[J]. The Journal of Physical Chemistry C, 2007, 111(49): 18055-18059.
[17] Jang K, Kim H J, Son S U. Low-temperature synthesis of ultrathin rhodium nanoplates via molecular orbital symmetry interaction between rhodium precursors[J]. Chemistry of Materials, 2010, 22(4): 1273-1275.
[18] Liao H B, Zhu J H, Hou Y L. Synthesis and electrocatalytic properties of PtBi nanoplatelets and PdBi nanowires[J]. Nanoscale, 2014, 6(2): 1049-1055.
[19] Saleem F, Zhang Z C, Xu B, et al. Ultrathin Pt-Cu nano-sheets and nanocones[J]. Journal of the American Chemical Society, 2013, 135(49): 18304-18307.
[20] Zhao L, Xu C F, Su H F, et al. Single-crystalline rhodium nanosheets with atomic thickness[J]. Advanced Science, 2015, 2(6): 1500100.
[21] Xu D D, Liu X L, Lv H, et al. Ultrathin palladium nanosheets with selectively controlled surface facets[J]. Chemical Science, 2018, 9(19): 4451-4455.
[22] Yin A X, Liu W C, Ke J, et al. Ru nanocrystals with shape-dependent surface-enhanced Raman spectra and catalytic properties: Controlled synthesis and DFT calculations[J]. Journal of the American Chemical Society, 2012, 134(50): 20479-20489.
[23] Huang X, Li S Z, Huang Y Z, et al. Synthesis of hexagonal close-packed gold nanostructures[J]. Nature Communications, 2011, 2: 292.
[24] Chen Q L, Du G F, Dong Y D, et al. Surfactant dependent evolution of Au-Pd alloy nanocrystals from trisoctahedron to excavated rhombic dodecahedron and multipod: A matter of crystal growth kinetics[J]. Scientific Bulletin, 2017, 62(20): 1359-1364.
[25] Laskar M, Zhong X, Li Z Y, et al. Manipulating the kinetics of seeded growth for edge-selective metal deposition and the formation of concave Au nanocrystals[J]. ChemSusChem, 2013, 6(10): 1959-1965.
[26] Lee H E, Yang K D, Yoon S M, et al. Concave rhombic dodecahedral Au nanocatalyst with multiple high-index facets for CO2 reduction[J]. ACS Nano, 2015, 9(8): 8384-8393.
[27] Chen Q L, Jia Y Y, Shen W, et al. Rational design and synthesis of excavated trioctahedral Au nanocrystals[J]. Nanoscale, 2015, 7(24): 10728-10734.
[28] Niu W X, Zhang W Q, Firdoz S, et al. Controlled synthesis of palladium concave nanocubes with sub-10-nanometer edges and corners for tunable plasmonic property[J]. Chemistry of Materials, 2014, 26(6): 2180-2186.
[29] Huang X Q, Tang S H, Zhang H H, et al. Controlled formation of concave tetrahedral/trigonal bipyramidal palladium nanocrystals[J]. Journal of the American Chemical Society, 131(39): 13916-13917.
[30] Zhang H, Jin M S, Wang J G, et al. Synthesis of Pd-Pt bimetallic nanocrystals with a concave structure through a bromide-induced galvanic replacement reaction[J]. Journal of the American Chemical Society, 2011, 133(15): 6078-6089.
[31] Zhang H, Li W Y, Jin M S, et al. Controlling the morphology of rhodium nanocrystals by manipulating the growth kinetics with a syringe pump[J]. Nano Letters, 2011, 11(2): 898-903.
[32] Dai L, Zhao Y X, Chi Q, et al. Controlled synthesis of Pd-Pt alloy nanohypercubes under microwave irradiation[J]. CrystEngComm, 2014, 16(24): 5206-5211.
[33] Chen Q L, Yang Y N, Cao Z M, et al. Excavated cubic-platinum-tin alloy nanocrystals constructed from ultrathin nanosheets with enhanced electrocatalytic activity[J]. Angewandte Chemie International Edition, 2016, 55(31): 9021-9025.
[34] Chen Q L, Cao Z M, Du G F, et al. Excavated octahedral Pt-Co alloy nanocrystals built with ultrathin nanosheets as superior multifunctional electrocatalysts for energy conversion applications[J]. Nano Energy, 2017, 39: 582-589.
[35] Cao Z M, Chen Q L, Zhang J W, et al. Platinum-nickel alloy excavated nano-multipods with hexagonal closepacked structure and superior activity towards hydrogen evolution reaction[J]. Nature Communications, 2017, 8: 15131.
[36] Xia Y N, Li W Y, Cobley C M, et al. Gold nanocages: From synthesis, properties, and applications[J]. Accounts of Chemical Research, 2008, 44(10): 914-924.
[37] Wang X, Vara M, Luo M, et al. Pd@Pt core-shell concave decahedra: A class of catalysts for the oxygen reduction reaction with enhanced activity and durability[J]. Journal of the American Chemical Society, 2015, 137(47): 15036-15042.
[38] He D S, He D P, Wang J, et al. Ultrathin icosahedral Pt-enriched nanocage with excellent oxygen reduction reaction activity[J]. Journal of the American Chemical Society, 2016, 138(5): 1494-1497.
[39] Dai L, Zhao Y, Qin Q, et al. Carbon-monoxide-assisted synthesis of ultrathin PtCu alloy nanosheets and their enhanced catalysis[J]. ChemNanoMat, 2016, 2(8): 776-780.
[40] Hou C P, Zhu J, Liu C, et al. Formaldehyde-assisted synthesis of ultrathin Rh nanosheets for applications in CO oxidation[J]. CrystEngComm, 2013, 15(31): 6127-6130.
[41] Jiang Y Q, Su J Y, Yang Y A, et al. A facile surfactant-free synthesis of Rh flower-like nanostructures constructed from ultrathin nanosheets and their enhanced catalytic properties[J]. Nano Research, 2016, 9(3): 849-856.
[42] Chen L N, Li H Q, Zhan W W, et al. Controlled encapsulation of flower-like Rh-Ni alloys with MOFs via tunable template dealloying for enhanced selective hydrogenation of alkyne[J]. ACS Applied Materials & Interfaces, 2016, 8(45): 31059-31066.
[43] Chen L N, Li H Q, Yan M W, et al. Ternary alloys encapsulated within different MOFs via a self-sacrificing template process: A potential platform for the investigation of size-selective catalytic performances[J]. Small, 2017, 13(33): 1700683.
[44] Huang X, Zeng Z Y, Bao S Y, et al. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets[J]. Nature Communications, 2013, 4: 1444.
[45] Xia X H, Xie S F, Liu M C, et al. On the role of surface diffusion in determining the shape or morphology of noble-metal nanocrystals[J]. Proceedings of the National Academy of Sciences, 2013, 110(17): 6669-6673.
[46] Cao Z M, Li H Q, Zhan C Y, et al. Monocrystalline platinum-nickel branched nanocages with enhanced catalytic performance towards the hydrogen evolution reaction[J]. Nanoscale, 2018, 10(11): 5072-5077.
[47] Huang L(黄龙), Zhan M(詹梅), Wang Y C(王宇成), et al. Syntheses of carbon paper supported high-index faceted Pt nanoparticles and their performance in direct formic acid fuel cells[J]. Journal of Electrochemistry(电化学), 2016, 22(2): 123-128.
[48] Jiang Y X(姜艳霞), Tian N(田娜), Zhou Z Y(周志有), et al. Progresses in electrocatalysis of nanomaterials—tuning the surface structure and property of electrocatalysts[J]. Journal of Electrochemistry(电化学), 2009, 15(4): 359-370. |