[1] Nitta N, Wu F X, Lee J T, et al. Li-ion battery materials: present and future[J]. Materials Today, 2015,18(5): 252-264.
[2] Li W D, Song B H, Manthiram A. High-voltage positive electrode materials for lithium-ion batteries[J]. Chemical Society Reviews, 2017,46(10): 3006-3059.
[3] Lee W, Muhammad S, Kim T, et al. New insight into Ni-rich layered structure for next-generation Li rechargeable batteries[J]. Advanced Energy Materials, 2017: 1701788.
[4] Makimura Y, Sasaki T, Nonaka T, et al. Factors affecting cycling life of LiNi0.8Co0.15Al0.05O2 for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2016,4(21): 8350-8358.
[5] Mohanty D, Dahlberg K, King D M, et al. Modification of Ni-rich FCG NMC and NCA cathodes by atomic layer deposition: preventing surface phase transitions for high-voltage lithium-ion batteries[J]. Scientific Reports, 2016, 6: 26532.
[6] Muto S, Tatsumi K, Kojima Y, et al. Effect of Mg-doping on the degradation of LiNiO2-based cathode materials by combined spectroscopic methods[J]. Journal of Power Sources, 2012, 205: 449-455.
[7] Liang C P, Kong F T, Longo R C, et al. Site-dependent multicomponent doping strategy for Ni-rich LiNi1-2yCoyMnyO2(y = 1/12) cathode materials for Li-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(48): 25303-25313.
[8] Dixit M, BorisMarkovsky, Aurbach D, et al. Unraveling the effects of Al doping on the electrochemical properties of LiNi0.5Co0.2Mn0.3O2 using first principles[J]. Journal of The Electrochemical Society, 2017, 164(1): A6359-A6365.
[9] Chen C H, Liu J, Stoll M E, et al. Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries[J]. Journal of Power Sources, 2004, 128(2): 278-285.
[10] Hoang K, Johannes M. Defect physics and chemistry in layered mixed transition metal oxide cathode materials: (Ni, Co, Mn) vs (Ni, Co, Al)[J]. Chemistry of Materials, 2016, 28(5): 1325-1334.
[11] Ju S H, Jang H C, Kang Y C. Al-doped Ni-rich cathode powders prepared from the precursor powders with fine size and spherical shape[J]. Electrochimica Acta, 2007, 52(25): 7286-7292.
[12] Kim Y, Kim D. Synthesis of high-density nickel cobalt aluminum hydroxide by continuous coprecipitation method[J]. ACS Applied Materials & Interfaces, 2012, 4(2): 586-589.
[13] Li Y, Xu R, Ren Y, et al. Synthesis of full concentration gradient cathode studied by high energy X-ray diffraction[J]. Nano Energy, 2016, 19: 522-531.
[14] Zhou P F, Meng H J, Zhang Z, et al. Stable layered Ni-rich LiNi0.9Co0.07Al0.03O2 microspheres assembled with nanoparticles as high-performance cathode materials for lithiumion batteries[J]. Journal of Materials Chemistry A, 2017, 5(6): 2724-2731.
[15] Jiang Z J(蒋志军), Zhang Y L(张亚莉), Wang Q(王乾), et al. Continuous synthesis and condition exploration of precursor Ni1/3Co1/3Mn1/3(OH)2 ternary cathode material[J]. Journal of Electrochemistry(电化学), 2016, 22(5): 528-534.
[16] Guan X Y(关小云), Hong C Y(洪朝钰), Zhu J P(朱建平), et al. Synthesis and electrochemical properties of nickel-rich cathode material LiNi0.6Co0.2Mn0.2O2 with high initial coulombic efficiency[J]. Journal of Electrochemistry(电化学), 2018, 24(1): 56-62.
[17] Liu W M, Hu G R, Peng Z D, et al. Synthesis of spherical LiNi0.8Co0.15Al0.05O2 cathode materials for lithium-ion batteries by a co-oxidation-controlled crystallization method[J]. Chinese Chemical Letters, 2011, 22(9): 1099-1102.
[18] Zhou F, Zhao X M, van Bommel A, et al. Coprecipitation synthesis of NixMn1-x(OH)2 mixed hydroxides[J]. Chemistry of Materials, 2010, 22(3): 1015-1021.
[19] Kim J. Synthesis and electrochemical behavior of Li[Li0.1Ni0.35-x/2CoxMn0.55-x/2]O2 cathode materials[J]. Solid State Ionics, 2003, 164(1/2): 43-49.
[20] Zhu X M, Wang Y X, Shang K H, et al. Improved rate capability of the conducting functionalized FTO-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for Li-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(33): 17113-17119.
[21] Liang M, Song D W, Zhang H Z, et al. Improved performances of LiNi0.8Co0.15Al0.05O2 material employing NaAlO2 as a new aluminum source[J]. ACS Applied Materials & Interfaces, 2017, 9(44): 38567-38574.
[22] Hwang S, Chang W, Kim S M, et al. Investigation of changes in the surface structure of LixNi0.8Co0.15Al0.05O2 cathode materials induced by the initial charge[J]. Chemistry of Materials, 2014, 26(2): 1084-1092.
[23] Bettge M, Li Y, Gallagher K, et al. Voltage fade of layered oxides: its measurement and impact on energy density[J]. Journal of The Electrochemical Society, 2013, 160(11): A2046-A2055.
[24] Watanabe S, Kinoshita M, Hosokawa T, et al. Capacity fade of LiAlyNi1-x-yCoxO2 cathode for lithium-ion batteries during accelerated calendar and cycle life tests (surface analysis of LiAlyNi1-x-yCoxO2 cathode after cycle tests in restricted depth of discharge ranges)[J]. Journal of Power Sources, 2014, 258: 210-217.
[25] Huang Y Q, Huang Y H, Hu X L. Enhanced electrochemical performance of LiNi0.8Co0.15Al0.05O2 by nanoscale surface modification with Co3O4[J]. Electrochimica Acta, 2017, 231: 294-299. |