[1] Liivat A, Thomas J, Guo J H, et al. Novel insights into higher capacity from the Li-ion battery cathode material Li2FeSiO4[J]. Electrochimica Acta, 2017, 223: 109-114.
[2] Zhao W G, Zheng J M, Zou L F, et al. High voltage operation of Ni-Rich NMC cathodes enabled by stable electrode/electrolyte interphases[J]. Advanced Energy Mater, 2018, 1800297.
[3] Senyshyn A, Mühlbauer M J, Dolotko O, et al. Low-temperature performance of Li-ion batteries: The behavior of lithiated graphite[J]. Journal of Power Sources, 2015, 282: 235-240.
[4] Zhao S X(赵世玺), Guo S T(郭双桃), Zhao J W(赵建伟), et al. Development on low-temperature performance of lithium ion batteries[J]. Journal of the Chinese Ceramic Society(硅酸盐学报), 2016, 44(1): 19-28.
[5] Liu Y(刘英), Li Q H(李秋红), Hu Y L(胡悦丽). Research on low temperature performance of lithium-ion battery[J]. Chinese Journal of Power Sources(电源技术), 2013, 37(2): 321-323.
[6] Zhang J B(张剑波), Su L S(苏来锁), Li X Y(李新宇), et al. Lithium plating identification from degradation behaviors of lithium-ion cells[J]. Journal of Electrochemistry(电化学), 2016, 22(6): 607-616.
[7] Zhao X W, Zhang G Y, Yang L, et al. A new charging mode of Li-ion batteries with LiFePO4/C composites under low temperature[J]. Journal of Thermal Analysis & Calorimetry, 2011, 104(2): 561-567.
[8] Yan P(严鹏), Hang Z(黄昭), Wu X Y(吴晓燕), et al. Research progress of olivine lithium ion phosphate for lithium-ion battery[J]. Chinese Journal of Power Sources (电源技术), 2015, 39(8): 1764-1767.
[9] Hu D G(胡东阁), Wang Z Z(王张志), Liu J L(刘佳丽), et al. The effect of precursors on performance of LiNi0.5Co0.2Mn0.3O2 cathode material[J]. Journal of Electrochemistry(电化学), 2013, 19(3): 204-209
[10] Liu C W(刘昌位), Wang Y(王宇), Guo Y Z(郭玉忠), et al. Surface structure and electrochemical performance of ZnO coated LiNi1/3Co1/3Mn1/3O2[J]. Journal of Electrochemistry (电化学), 2014, 20(1): 60-65.
[11] Cai S W(蔡少伟). Research progress and application of Li-Ni-Co-Mn-O as cathode material for lithium ion battery [J]. Chinese Journal of Power Sources(电源技术), 2013, 37(6): 1065-1068.
[12] Zhou L Z(周罗增), Xu Q J(徐群杰), Tang W P(汤卫平), et al. Research progress of Mn-based lithium-rich cathode materials for Li-ion batteries[J]. Journal of Electrochemistry(电化学), 2015, 21(2):138-144.
[13] Shen Z H(沈重亨), Shen S Y(沈守宇), Lin Z(林舟), et al. Aqueous solution-evaporation route synthesis and phase structural research of the Li-rich cathode Li1.23Ni0.09Co0.12Mn0.56O2 by in-situ XRD[J]. Journal of Electrochemistry (电化学), 2013, 19(6): 537-543.
[14] Hou M Y(侯孟炎), Bao H L(鲍洪亮), Wang K(王珂), et al. Electrochemical and in situ X-ray absorption fine structure study of Li-rich cathode materials[J]. Journal of Electrochemistry (电化学), 2016, 22(3): 288-298.
[15] Rui X H, Jin Y, Feng X Y, et al. A comparative study on the low-temperature performance of LiFePO4/C and Li3V2(PO4)3/C cathodes for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196(4): 2109-2114.
[16] Lv D, Wang L, Hu P, et al. Li2O-B2O3-Li2SO4 modified LiNi1/3Co1/3Mn1/3O2 cathode material for enhanced electrochemical performance[J]. Electrochimica Acta, 2017, 247: 803-811
[17] Zeng L J, Gong Q, Liao X Z, et al. Enhanced low-temperature performance of slight Mn-substituted LiFePO4/C cathode for lithium ion batteries[J]. Chinese Science Bulletin, 2011, 56(12): 1262-1266.
[18] Li G, Zhang Z, Wang R, et al. Effect of trace Al surface doping on the structure, surface chemistry and low temperature performance of LiNi0.5Co0.2Mn0.3O2, cathode[J]. Electrochimica Acta, 2016, 212: 399-407.
[19] Jin X, Xu Q J, Liu H M, et al. Excellent rate capability of Mg doped Li[Li0.2Ni0.13Co0.13Mn0.54]O2 cathode material for lithium-ion battery[J]. Electrochimica Acta, 2014, 136: 19-26.
[20] Gong Z L(龚正良), Zhang W(张炜), Lv D P(吕东平), et al. Application of synchrotron radiation based electrochemical in-situ techniques to study of electrode materials for lithium-ion batteries[J]. Journal of Electrochemistry(电化学), 2013, 19(6): 521-522
[21] Wang Y, Cao G. Developments in nanostructured cathode materials for high-performance lithium-ion batteries[J]. Advanced Materials, 2010, 20(12): 2251-2269.
[22] Zhao N, Li Y, Zhao X, et al. Effect of particle size and purity on the low temperature electrochemical performance of LiFePO4/C cathode material[J]. Journal of Alloys & Compounds, 2016, 683: 123-132.
[23] Sun H M(孙红梅), Wei J B(韦佳兵), Zhang J R(张佳瑢), et al. Effect of particle size of lithium iron phosphate on discharge performance at low temperature[J]. Chinese Journal of Power Sources(电源技术), 2013, 37(3): 364-369.
[24] Zhao W M, Ji Y J, Zhang Z R, et al. Recent advances in the research of functional electrolyte additives for lithium-ion batteries[J]. Current Opinion in Electrochemistry, 2017, 6(1): 84-91.
[25] Wei L M(韦连梅), Yan X X(燕溪溪), Zhang S N(张素娜), et al. Progress of low-temperature electrolyte for lithium-ion battery[J]. Energy Storage Science and Technology(储能科学与技术), 2017, 6(1): 69-77.
[26] Jones J P, Smart M C, Krause F C, et al. The effect of electrolyte composition on lithium plating during low temperature charging of Li-ion cells[J]. ECS Transactions, 2017, 75(21): 1-11.
[27] Cappetto A, Cao W J, Luo J F, et al. Performance of wide temperature range electrolytes for Li-ion capacitor pouch cells[J]. Journal of Power Sources, 2017, 359: 205-214.
[28] Li Q, Jiao S, Luo L, et al. Wide temperature electrolytes for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(22): 18826-18835.
[29] Kasprzyk M, Zalewska A, Niedzicki L, et al. Non-crystallizing solvent mixtures and lithium electrolytes for low temperatures[J]. Solid State Ionics, 2017, 308: 22-26.
[30] Dong X L, Guo Z W, Guo Z Y, et al. Organic batteries operated at -70 °C[J]. Joule, 2018, 2(5): 902-903.
[31] Smart M C, Ratnakumar B V, Chin K B, et al. Lithium-ion electrolytes containing ester cosolvents for improved low temperature performance[J]. Journal of the Electrochemical Society, 2010, 157(12): A1361-A1374.
[32] Smart M C, Bugga R V. Lithium ion electrolytes and lithium ion cells with good low temperature performance: US 8920981B2[P]. 2014.
[33] Zhang S S, Xu K, Jow T R. A new approach toward improved low temperature performance of Li-ion battery[J]. Electrochemistry Communications, 2002, 4(11): 928-932.
[34] Li S, Li X, Liu J, et al. A low-temperature electrolyte for lithium-ion batteries[J]. Ionics, 2015, 21(4): 901-907.
[35] Mandal B K, Padhi A K, Zhong S, et al. New low temperature electrolytes with thermal runaway inhibition for lithium-ion rechargeable batteries[J]. Journal of Power Sources, 2006, 162(1): 690-695.
[36] Hamenu L, Lee H S, Latifatu M, et al. Lithium-silica nanosalt as a low-temperature electrolyte additive for lithium-ion batteries[J]. Current Applied Physics, 2016, 16(6): 611-617.
[37] Bian X J(卞锋菊),Zhang Z R(张忠如), Yang Y(杨勇). Effects of fluoroethylene carbonate additive on low temperature performance of Li-ion batteries[J]. Journal of Electrochemistry(电化学), 2013, 19(4): 355-340.
[38] Liu B, Li B, Guan S. Effect of fluoroethylene carbonate additive on low temperature performance of Li-ion batteries[J]. Electrochemical and Solid-State Letters, 2012, 15(6): A77-A79.
[39] Yang B, Zhang H, Yu L, et al. Lithium difluorophosphate as an additive to improve the low temperature performance of LiNi0.5Co0.2Mn0.3O2/graphite cells[J]. Electrochi-
mica Acta, 2016, 221: 107-114.
[40] Zhao W M, Zheng G R, Lin M, et al. Toward a stable solid-electrolyte-interfaces on nickel-rich cathodes: LiPO2F2 salt-type additive and its working mechanism for LiNi0.5Mn0.25Co0.25O2 cathodes[J]. Journal of Power Sources, 2018, 380: 149-157.
[41] Liao L, Fang T, Zhou X, et al. Enhancement of low-temperature performance of LiFePO4, electrode by butyl sultone as electrolyte additive[J]. Solid State Ionics, 2014, 254(4): 27-31.
[42] Jurng S, Park S, Yoon T, et al. Low-temperature performance improvement of graphite electrode by allylsulfide additive and its film-forming mechanism[J]. Journal of the Electrochemical Society, 2016, 163(8): A1798-A1804.
[43] Zhang S S, Xu K, Jow T R. The low temperature performance of Li-ion batteries[J]. Journal of Power Sources, 2003, 115(1): 137-140.
[44] Zhang S S, Xu K, Jow T R. Low temperature performance of graphite electrode in Li-ion cells[J]. Electrochimica Acta, 2002, 48(3): 241-246.
[45] Lüders C V, Zinth V, Erhard S V, et al. Lithium plating in lithium-ion batteries investigated by voltage relaxation and in situ neutron diffraction[J]. Journal of Power Sources, 2017, 342: 17-23.
[46] Zinth V, Lüders C V, Hofmann M, et al. Lithium plating in lithium-ion batteries at sub-ambient temperatures investigated by in situ neutron diffraction[J]. Journal of Power Sources, 2014, 271: 152-159.
[47] Zhang S S, Xu K, Jow T R. Electrochemical impedance study on the low temperature of Li-ion batteries[J]. Electrochimica Acta, 2004, 49(7): 1057-1061.
[48] Zhang L J(张丽津), Peng D C(彭大春), He Y D(何月德), et al. Structure and electrochemical performance of flake graphite anode materials with mildly expanded interlayer by oxidation[J]. Carbon Techniques(炭素技术), 2016, 35(6): 17-22.
[49] Wu Y S, Lee Y H, Yang Z W, et al. Influences of surface fluorination and carbon coating with furan resin in natural graphite as anode in lithium-ion batteries[J]. Journal of Physics & Chemistry of Solids, 2008, 69(2): 376-382.
[50] Zou M, Li J, Wen W W, et al. Silver-incorporated composites of Fe2O3, carbon nanofibers as anodes for highperformance lithium batteries[J]. Journal of Power Sources, 2014, 270(4): 468-474.
[51] Li J, Wen W, Xu G, et al. Fe-added Fe3C carbon nanofibers as anode for Li ion batteries with excellent low-temperature performance[J]. Electrochimica Acta, 2015, 153: 300-305.
[52] Ohta N, Nagaoka K, Hoshi K, et al. Carbon-coated graphite for anode of lithium ion rechargeable batteries: Graphite substrates for carbon coating[J]. Journal of Power Sources, 2009, 194(2): 985-990.
[53] Nobili F, Mancini M, Dsoke S, et al. Low-temperature behavior of graphite-tin composite anodes for Li-ion batteries[J]. Journal of Power Sources, 2010, 195(20): 7090-7097.
[54] Wu Y, Fang S, Jiang Y. Carbon anodes for a lithium secondary battery based on polyacrylonitrile[J]. Journal of Power Sources, 1998, 75(2): 201-206.
[55] Tang Z Y(唐致远), Wu F(吴菲). Study on modification graphite as anode for lithium ion battery[J]. Chinese Journal of Power Sources (电源技术), 2006, 30(2): 155-161.
[56] Huang C K, Sakamoto J S, Wolfenstine J, et al. The limits of low-temperature performance of Li-ion cells[J]. Journal of the Electrochemical Society, 2000, 147(8): 2893-2896. |