[1] Binnig G, Rohrer H. Scanning tunneling microscopy[J]. Helvetica Physica Acta, 1982, 55(6): 726-735.
[2] Pohl D W, Denk W, Lanz M. Optical stethoscopy image recording with resolution λ/20[J]. Applied Physics Letters, 1984, 44(7): 651-653.
[3] Binnig G, Quate C F, Gerber C. Atomic force microscope[J]. Physical Review Letters, 1986, 56(9): 930-933.
[4] Hansma P K, Drake B, Marti O, et al. The scanning ion-conductance microscope[J]. Science, 1989, 243(4891): 641-643.
[5] Bard A J, Fan F F, Kwak J, et al. Scanning electrochemical microscopy introduction and principal[J]. Analytical Chemistry, 1989, 61(2): 132-138.
[6] Wittstock G. Scanning electrochemical microscopy for analysis of functional material[J]. Optics & Optoelectronic Technology, 2012, 10(4): 6-11.
[7] Li B H(李保华), Ma Y(马燕), Huang L(黄蕾). Progress of scanning electrochemical microscopy and its application in the biological analysis[J]. Chemistry(化学通报), 2013, 76(2): 124-131.
[8] Du X J(杜晓静), Xu F(徐峰), Li F(李菲), et al. New application of scanning electrochemical microscopy in characterization of hydrogel microwell arrays[J]. Scientia Sinica Chimica (中国科学:化学), 2014, 44(11): 1814-1822
[9] Cao F H(曹发和), Xia Y(夏研), Liu W J(刘文娟), et al. Basic principles and applications of SECM in metal corrosion SECM[J]. Journal of Electrochemistry(电化学), 2013, 19(5): 393-401.
[10] Lin C J(林昌健), Li Y(李彦), Lin B(林斌), et al. Developments of scanning electrochemical probes and their applications in studying of localized corrosions[J]. Journal of Electrochemistry(电化学), 2009, 15(2): 121-128.
[11] Zhang Y(张贇), Wu X M(吴晓梅), Zeng X Q(曾小勤), et al. Application of scanning electrochemical microscopy in power sources[J]. Chinese Journal of Power Sources(电源技术), 2015, 39(5): 1129-1131.
[12] Chen X X(陈星星). Mini-review: Possible applications of scanning electrochemical microscopy (SECM) in characterizations of oxygen reduction reaction and oxygen evolution reaction[J]. Journal of Electrochemistry(电化学), 2016, 22(2): 113-122.
[13] Xin S L(辛淑莉), Sun Y(孙瑶), Yuan D(袁丁), et al. Applications of scanning electrochemical microscoy in photoelectrochemistry[J]. Scientia Sinica(Chimica)(中国科学:化学), 2017, 47(9): 1085-1101.
[14] Wang Y J(王玉娇), Wang W(王玮), Feng P Y(冯平源), et al. Research progresses of the analytical applications of scanning electrochemical microscopy in Li-ion batteries[J]. Energy Storage Science and Technology(储能科学与技术),2017, 6(1): 1-10.
[15] Yu Y, Sun T, Mirkin M V. Toward more reliable measurements of electron-transfer kinetics at nanoelectrodes: Next approximation[J]. Analytical Chemistry, 2016, 88(23): 11758-11766.
[16] Velmurugan J, Sun P, Mirkin M V. Scanning electrochemical microscopy with gold nanotips: The effect of electrode material on electron transfer rates[J]. Journal of Physical Chemistry C, 2009, 113(1): 459-464.
[17] Li Y, Hu K K, Yu Y, et al. Direct electrochemical measurements of reactive oxygen and nitrogen species in nontransformed and metastatic human breast cells[J]. Journal of the American Chemical Society, 2017, 139(37): 13055-13062.
[18] Zhou J Y, Jiang D C, Chen H Y. Nanoelectrochemical architectures for high-spatial-resolution single cell analysis[J]. Science China-Chemistry, 2017, 60(10): 1277-1284.
[19] Kim J, Renault C, Nioradze N, et al. Electrocatalytic activity of individual Pt nanoparticles studied by nanoscale scanning electrochemical microscopy[J]. Journal of The American Chemical Society, 2016, 138(27): 8560-8568.
[20] Simpson B H, Rodriguez-Lopez J. Electrochemical imaging and redox interrogation of surface defects on operating SrTiO3 photoelectrodes[J]. Journal of the American Chemical Society, 2015, 137(47): 14865-14868.
[21] Wolbarsht M L, Macnichol E F, Wagner H G. Glass insulated platinum microelectrode[J]. Science, 1960, 132(3436): 1309-1310.
[22] Katemann B B, Schuhmann W. Fabrication and characterization of needle-type Pt-disk nanoelectrodes[J]. Electroanalysis, 2002, 14(14): 22-28.
[23] Li Y X, Bergman D, Zhang B. Preparation and electrochemical response of 1-3 nm Pt disk electrodes[J]. Analytical Chemistry, 2009, 81(13): 5496-5502.
[24] Shao Y, Mirkin M V, Fish G, et al. Nanometer-sized electrochemical sensors[J]. Analytical Chemistry, 1997, 69(8): 1627-1634.
[25] Liu Y Z, Li M N, Zhang F, et al. Development of Au disk nanoelectrode down to 3 nm in radius for detection of dopamine release from a single cell[J]. Analytical Chemistry, 2015, 87(11): 5531-5538.
[26] Noël J M, Velmurugan J, Gokme拶e E, et al. Fabrication, characterization, and chemical etching of Ag nanoelectrodes[J]. Journal of Solid State Electrochemistry, 2013, 17(2): 385-389.
[27] Zhang B, Galusha J, Shiozawa P G, et al. Bench-top method for fabricating glass-sealed nanodisk electrodes, glass nanopore electrodes, and glass nanopore membranes of controlled size[J]. Analytical Chemistry, 2007, 79(13): 4778-4787.
[28] Bonazza H L, Fernandez J L. An efficient method for fabrication of disk-shaped scanning electrochemical microscopy probes with small glass-sheath thicknesses[J]. Journal of Electroanalytical Chemistry, 2010, 650(1): 75-81.
[29] Etienne M, Moulin J P, Gourhand S. Accurate control of the electrode shape for high resolution shearforce regulated SECM[J]. Electrochimica Acta, 2013, 110(6): 16-21.
[30] Sun P, Mirkin M V. Scanning electrochemical microscopy with slightly recessed nanotips[J]. Analytical Chemistry, 2007, 79(15): 5809-5816.
[31] Bae J H, Yu Y, Mirkin M V. Recessed nanoelectrodes for nanogap voltammetry[J]. ChemElectroChem, 2016, 3(12): 2043-2047.
[32] Velmurugan J, Mirkin M V. Fabrication of nanoelectrodes and metal clusters by electrodeposition[J]. ChemPhysChem, 2010, 11(13): 3011-3017.
[33] Jena B K, Percival S J, Zhang B. Au disk nanoelectrode by electrochemical deposition in a nanopore[J]. Analytical Chemistry, 2010, 82(15): 6737-6743.
[34] Velmurugan J, Noël J M, Mirkin M V. Nucleation and growth of mercury on Pt nanoelectrodes at different overpotentials[J]. Chemical Science, 2014, 5(1): 189-194.
[35] Penner R M, Heben M J, Longin T L, et al. Fabrication and use of nanometer-sized electrodes in electrochemistry[J]. Science, 1990, 250(4984): 1118-1121.
[36] Nagahara L A, Thundat T, Lindsay S M. Preparation and characterization of STM tips for electrochemical studies[J]. Review of Scientific Instruments, 1989, 60(10): 3128-3130.
[37] Angle M R, Schaefer A T. Neuronal recordings with solid-conductor intracellular nanoelectrodes (SCINEs)[J]. Plos One, 2012, 7(8): e43194.
[38] Schulte A, Chow R H. A simple method for insulating carbon-fiber microelectrodes using anodic electrophoretic deposition of paint[J]. Analytical Chemistry, 1996, 68(17): 3054-3058.
[39] Singhal R, Orynbayeva Z, Sundaram R V K, et al. Multifunctional carbon-nanotube cellular endoscopes[J]. Nature Nanotechnology, 2011, 6(1): 57-64.
[40] Yum K, Cho H N, Hu J, et al. Individual nanotube-based needle nanoprobes for electrochemical studies in picoliter microenvironments[J]. ACS Nano, 2007, 1(5): 440-448.
[41] Zhao G, Giolando D M, Kirchhoff J R. Cheminform abstract: Fabrication of silica-coated carbon fiber ultramicroelectrodes by chemical vapor deposition[J]. Analytical Chemistry, 1995, 67(15): 2592-2598.
[42] Holt K B, Hu J P, Foord J S. Fabrication of boron-doped diamond ultramicroelectrodes for use in scanning electrochemical microscopy experiments[J]. Analytical Chemistry, 2007,79(6): 2556-2561.
[43] Li X, Majdi S, Dunevall J, et al. Quantitative measurement of transmitters in individual vesicles in the cytoplasm of single cells with nanotip electrodes[J]. Angewante Chemie International Edition, 2015, 54(41): 11978-11982.
[44] Li Y T, Zhang S H, Wang L, et al. Nanoelectrode for amperometric monitoring of individual vesicular exocytosis inside single synapses[J]. Angewante Chemie International Edition, 2014, 53(46): 12456-12460.
[45] Bach C E, Nichols R J, Beckmann W, et al. Effective insulation of scanning tunneling microscopy tips for electrochemical studies using an electropainting method[J]. Vida Rural, 1993, 140(140): 1281-1284.
[46] Sun P, Zhang Z, Guo J D, et al. Fabrication of nanometer-sized electrodes and tips for scanning electrochemical microscopy[J]. Analytical Chemistry, 2001, 73(21): 5346-5351.
[47] Watkins J J, Chen J, White H S, et al. Zeptomole voltammetric detection and electron-transfer rate measurements using platinum electrodes of nanometer dimensions[J]. Analytical Chemistry, 2003, 75(6): 3962-3971.
[48] Takahashi Y, Shevchuk A I, Novak P, et al. Multifunctional nanoprobes for nanoscale chemical imaging and localized chemical delivery at surfaces and interfaces[J]. Angewante Chemie International Edition, 2011, 50(41): 9638-9642.
[49] Takahashi Y, Shevchuk A I, Novak P, et al. Topographical and electrochemical nanoscale imaging of living cells using voltage-switching mode scanning electrochemical microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(29): 11540-11545.
[50] Kim Y T, Scarnulis D M, Ewing A G. Carbon-ring electrodes with 1-μm tip diameter[J]. Analytical Chemistry, 1986, 58(8): 1782-1786.
[51] McNally M, Wong D K Y. An in vivo probe based on mechanically strong but structurally small carbon electrodes with an appreciable surface area[J]. Analytical Chemistry, 2001, 73(20): 4793-4800.
[52] Actis P, Tokar S, Clausmeyer J, et al. Electrochemical nanoprobes for single-cell analysis[J]. ACS Nano, 2014, 8(1): 875-884.
[53] Schrlau M G, Falls E M, Ziober B L, et al. Carbon nanopipettes for cell probes and intracellular injection[J]. Nanotechnology, 2008, 19(1): 15101.
[54] Vitol E A, Schrlau M G, Bhattacharyya S, et al. Effects of deposition conditions on the structure and chemical properties of carbon nanopipettes[J]. Chemical Vapor Deposition, 2009, 15(7/9): 204-208.
[55] Singhal R, Bhattacharyya S, Orynbayeva Z, et al. Small diameter carbon nanopipettes[J]. Nanotechnology, 2010, 21(1): 15304.
[56] Yu Y, Noël J M, Mirkin M V. Carbon pipette-based electrochemical nanosampler[J]. Analytical Chemistry, 2014, 86(7): 3365-3372.
[57] Rees H R, Anderson S E, Privman E, et al. Carbon nano-pipette electrodes for dopamine detection in drosophila[J]. Analytical Chemistry, 2015, 87(7): 3849-3855.
[58] Hu K K, Gao Y, Wang Y X, et al. Platinized carbon nanoelectrodes as potentiometric and amperometric SECM probes[J]. Journal of Solid State Electrochemistry, 2013, 17(12): 2971-2977.
[59] Zhu X Y, Qiao Y H, Zhang X, et al. Fabrication of metal nanoelectrodes by interfacial reactions[J]. Analytical Chemistry, 2014, 86(14): 7001-7008.
[60] Hao R, Zhang B. Nanopipette-based electroplated nanoelectrodes[J]. Analytical Chemistry, 2015, 88(1): 614-620.
[61] Wang F F, Wang W, He X, et al. Nanofabrication of the gold scanning probe for the STM-SECM coupling system with nanoscale spatial resolution[J]. Science China-Chemistry, 2017, 60(5): 649-655.
[62] Cai C, Tong Y, Mirkin M V. Probing rapid ion transfer across a nanoscopic liquid-liquid interface[J]. Journal of Physical Chemistry B, 2004, 108(46): 17872-17878.
[63] Morris C, Friedman A K, Baker L A. Applications of nanopipettes in the analytical sciences[J]. Analyst, 2010, 135(9): 2190-2202.
[64] Takahashi Y, Shevchuk A I, Novak P, et al. Simultaneous noncontact topography and electrochemical imaging by SECM/SICM featuring ion current feedback regulation[J]. Journal of the American Chemical Society, 2010, 132(29): 10118-10126.
[65] Kranz C. Recent advancements in nanoelectrodes and nanopipettes used in combined scanning electrochemical microscopy techniques[J]. Analyst, 2014, 139(2): 336-352. [66] O’Connell M A, Wain A J. Combined electrochemical-topographical imaging: A critical review[J]. Analytical Methods, 2015, 7(17): 6983-6999.
[67] Nadappuram B P, McKelvey K, Botros R A, et al. Fabrication and characterization of dual function nanoscale pH scanning ion conductance microscopy (SICM) probes for high resolution pH mapping[J]. Analytical Chemistry, 2013, 85(17): 8070-8074.
[68] O’Connell M A, Wain A J. Mapping electroactivity at individual catalytic nanostructures using high-resolution scanning electrochemical-scanning ion conductance microscopy[J]. Analytical Chemistry, 2014, 86(24): 12100-12107.
[69] Sen M, Takahashi Y, Matsumae Y, et al. Improving the electrochemical imaging sensitivity of scanning electrochemical microscopy-scanning ion conductance microscopy by using electrochemical Pt deposition[J]. Analytical Chemistry, 2015, 87(6): 3484-3489.
[70] Clausmeyer J, Botz A, Oehl D, et al. The oxygen reduction reaction at the three-phase boundary: Nanoelectrodes modified with Ag nanoclusters[J]. Faraday Discussions, 2016, 193: 241-250.
[71] Actis P, Tokar S, Clausmeyer J, et al. Electrochemical nanoprobes for single-cell analysis[J]. ACS Nano, 2014, 8(1): 875-884.
[72] Yang C, Sun P. Fabrication and characterization of a dual submicrometer-sized electrode[J]. Analytical Chemistry, 2009, 81(17): 7496-7500.
[73] McKelvey K, Nadappuram B P, Actis P, et al. Fabrication, characterization, and functionalization of dual carbon electrodes as probes for scanning electrochemical microscopy (SECM)[J]. Analytical Chemistry, 2013, 85(15): 7519-7526.
[74] Macpherson J V, Unwin P R. Combined scanning electrochemical-atomic force microscopy[J]. Analytical Chemistry, 2000, 72(2): 276-285.
[75] Kranz C, Friedbacher G, Mizaikoff B, et al. Integrating an ultramicroelectrode in an AFM cantilever: Combined technology for enhanced information[J]. Analytical Chemistry, 2001, 73(11): 2491-2500.
[76] Burt D P, Wilson N R, Weaver J M R, et al. Nanowire probes for high resolution combined scanning electrochemical microscopy - atomic force microscopy[J]. Nano Letters, 2005, 5(4): 639-643.
[77] Patil A V, Beker A F, Wiertz F G M, et al. Fabrication and characterization of polymer insulated carbon nanotube modified electrochemical nanoprobes[J]. Nanoscale, 2010, 2(5): 734-738.
[78] Wain A J, Cox D, Zhou S, et al. High-aspect ratio needle probes for combined scanning electrochemical microscopy-atomic force microscopy[J]. Electrochemistry Communications, 2011, 13(1): 78-81.
[79] Pust S E, Salomo M, Oesterschulze E, et al. Influence of electrode size and geometry on electrochemical experiments with combined SECM-SFM probes[J]. Nanotechnology, 2010, 21(1): 105709.
[80] Gullo M R, Frederix P L, Akiyama T, et al. Characterization of microfabricated probes for combined atomic force and high-resolution scanning electrochemical microscopy[J]. Analytical Chemistry, 2006, 78(15): 5436-5442.
[81] Avdic A, Lugstein A, Wu M, et al. Fabrication of coneshaped boron doped diamond and gold nanoelectrodes for AFM-SECM[J]. Nanotechnology, 2011, 22(14): 145306.
[82] Rodriguez R D, Anne A, Cambril E, et al. Optimized hand fabricated AFM probes for simultaneous topographical and electrochemical tapping mode imaging[J]. Ultramicroscopy, 2011, 111(8): 973-981.
[83] Wain A J, Pollard A J, Richter C. High-resolution electrochemical and topographical imaging using batch-fabricated cantilever probes[J]. Analytical Chemistry, 2014, 86(1): 5143-5149.
[84] Nellist M R, Chen Y K, Mark A, et al. Atomic force microscopy with nanoelectrode tips for high resolution electrochemical, nanoadhension and nanoelectrical imaging[J]. Nanotechnology, 2017, 28(9): 095711.
[85] Lee E, Kim M, Seong J, et al. An L-shaped nanoprobe for scanning electrochemical microscopy-atomic force microscopy[J]. Physica Status Solidi-Rapid Research Letters, 2013, 7(6): 406-409.
[86] Li Y, Cox J T, Zhang B. Electrochemical responses and electrocatalysis at single Au nanoparticles[J]. Journal of The American Chemical Society, 2010, 132(9): 3047-3054.
[87] Yu Y, Gao Y, Hu K, et al. Electrochemistry and electrocatalysis at single gold nanoparticles attached to carbon nanoelectrodes[J]. ChemElectroChem, 2015, 2(1): 58-63.
[88] Kim J, Kim B K, Cho S K, et al. Tunneling ultramicroelectrode: Nanoelectrodes and nanoparticle collisions[J]. Journal of The American Chemical Society, 2014, 136(23): 8173-8176.
[89] O’Connell M A, Lewis J R, Wain A J. Electrochemical imaging of hydrogen peroxide generation at individual gold nanoparticles[J]. Chemical Communications, 2015, 51(51): 10314-10317.
[90] Eckhard K, Chen X X, Turcu F, et al. Redox-competition mode of scanning electrochemical microscopy (SECM)[J]. Physical Chemistry Chemical Physics, 2006, 8(45): 5359-5365.
[91] Chen X X, Eckhard K, Zhou M, et al. Electrocatalytic activity of spots of electrodeposited fuel-cell catalysts on carbon nanotubes modified glassy carbon[J]. Analytical Chemistry, 2009, 81(18): 7597-7603.
[92] Fernandez J, Bard A J. Scanning electrochemical microscopy. 47. Imaging electrocatalytic activity for oxygen reduction in an acidic medium by the tip generation-substrate collection mode[J]. Analytical Chemistry, 2003, 75(13): 2967-2974.
[93] Fernandez J, Bard A J. Scanning electrochemical microscopy 50. Kinetic study of electrode reactions by the tip generation-substrate collection mode[J]. Analytical Chemistry, 2004, 76(8): 2281-2289.
[94] Ludwig M, Kranz C, Schuhmann W, et al. Topography feedback mechanism for the scanning electrochemical microscope based on hydrodynamic forces between tip and sample[J]. Review of Scientific Instruments, 1995, 66(4): 2857-2860.
[95] Nebel M, Eckhard K, Erichsen T, et al. 4D shearforce-based constant-distance mode scanning electrochemical microscopy[J]. Analytical Chemistry, 2010, 82(18): 7842-7848.
[96] Lazenby R A, McKelvey K, Unwin P R. Hopping intermittent contact-scanning electrochemical microscopy (HIC-SECM): Visualizing interfacial reactions and fluxes from surfaces to bulk solution[J]. Analytical Chemistry, 2013, 85(5): 2937-2944.
[97] Nebel M, Erichsen T, Schuhmann W. Constant-distance mode SECM as a tool to visualize local electrocatalytic activity of oxygen reduction catalysts[J]. Beilstein Journal of Nanotechnology, 2014, 5(1): 141-151.
[98] Botz A J R, Nebel M, Rincon R A, et al. Onset potential determination at gas-evolving catalysts by means of constant-distance mode positioning of nanoelectrodes[J]. Electrochimica Acta, 2015, 179: 38-44.
[99] Sun T, Yu Y, Zacher, et al. Scanning electrochemical microscopy of individual catalytic nanoparticles[J]. Angewante Chemie International Edition, 2014, 53(51): 14120-14123.
[100] Kim J, Renault, C, Nioradze N, et al. Nanometer scale scanning electrochemical microscopy instrumentation[J]. Analytical Chemistry, 2016, 88(20): 10284-10289.
[101] Cox J T, Zhang B. Nanoelectrodes: Recent advances and new directions[J]. Annual Review of Analytical Chemistry, 2012, 5(1): 253-272.
[102] Fan Y S, Han C, Zhang B. Recent advances in the development and application of nanoelectrodes[J]. Analyst, 2016, 141(19): 5474-5487.
[103] Chen S L, Liu Y W. Electrochemistry at nanometer-sized electrodes[J]. Physical Chemistry Chemical Physics, 2014, 16(2): 635-652.
[104] Oja S M, Fan Y, Armstrong C M, et al. Nanoscale electrochemistry revisited[J]. Analytical Chemistry, 2015, 88(1): 414-430.
[105] Wang Y X, Shan X N, Tao N J. Emerging tools for studying single entity electrochemistry[J]. Faraday Discussions, 2016, 193: 9-39.
[106] Li Y R, Ning X M, Ma Q L, et al. Recent advances in electrochemistry by scanning electrochemical microscopy[J]. TrAC-Trends in Analytical Chemistry, 2016, 80: 242-254.
[107] Zoski C G. Review-Advances in scanning electrochemical microscopy (SECM)[J]. Journal of The Electrochemical Society, 2016, 163(4): H3088-H3100.
[108] Kang M, Momotenko D, Page A, et al. Frontiers in nano-scale electrochemical imaging: Faster, multifunctional, and ultrasensitive[J]. Langmuir, 2016, 32(32): 7993-8008.
[109] Clausmeyer J, Schuhmann W. Nanoelectrodes: Applications in electrocatalysis, single-cell analysis and highresolution electrochemical imaging[J]. TrAC-Trends in Analytical Chemistry, 2016, 79: 46-59.
[110] Takahashi Y. Development of high-resolution scanning electrochemical microscopy for nanoscale topography and electrochemical simultaneous imaging[J]. Electrochemistry, 2016, 84(9): 662-666.
[111] Park H S, Jang J H. Applications of scanning electrochemical micrsocopy (SECM) coupled to atomic force microscopy with sub-micrometer spatial resolution to the development and discovery of electrocatalysts[J]. Journal of Electrochemical Science and Technology, 2016, 7(4): 316-326.
[112] Kai T H, Zoski C G, Bard A J. Scanning electrochemical microscopy at nanometer level[J]. Chemical Communications, 2018, 54(16): 1934-1947.
[113] Izquierdo J, Knittel P, Kranz C. Scanning electrochemical microscopy: An analytical perspective[J]. Analytical Bioanalytical Chemistry, 2018, 410(2): 307-314.
[114] Matsue T. Bioimaging with micro/nanoelectrode systems[J]. Analytical Sciences, 2013, 29(2): 171-179.
[115] Shen M, Qu Z Z, DesLaurier J, et al. Single synaptic observation of cholinergic neurotransmission on living neurons: Concentration and dynamics[J]. Journal of The American Chemical Society, 2018, 140(25): 7764-7768. |