[1] Andreas K, Peter A, Margret W M. Origin of the synergetic effects of LiFe0.3Mn0.7PO4–spinel blends via dynamic in situ X-ray Diffraction measurements[J]. Journal of The Electrochemical Society,2016,163(9): A1936-A1940.
[2] Takeshi K, Norihiro K, Yo K, et al. A method of separating the capacities of layer and spinel compounds in blended cathode[J]. Journal of Power Sources,2014,245:1-6.
[3] Ren X Z(任祥忠), Liu T(刘涛), Sun L N(孙灵娜), et al. Preparation and Electrochemical Performances of Li1.2Mn0.54-xNi0.13Co0.13ZrxO2 Cathode Materials for Lithium-Ion Batteries[J].Acta Physico-Chimica Sinica(物理化学学报),2014,30(9),1641-1649.
[4] Wang J, He X, Paillard E, et al. Lithium- and Manganese-Rich Oxide Cathode Materials for High-Energy Lithium Ion Batteries[J]. Advanced Energy Materials,2016,6:1-17.
[5] Hashem A M A, Abdel-Ghany A E, Eid A E, et al. Study of the surface modification of LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion battery[J]. Journal of Power Sources,2011,196(20): 8632-8637.
[6] Rao C V, Reddy A L M, Ishikawa Y, et al. LiNi1/3Co1/3Mn1/3O2-graphene composite as a promising cathode for lithium-ion batteries[J]. ACS Applied Materials and Interfaces,2011,3(8):2966-2972.
[7] Wu K C, Wang F, Gao L L, et al. Effect of precursor and synthesis temperature on the structural and electrochemical properties of Li(Ni0.5Co0.2Mn0.3)O2[J]. Electrochimica Acta,2012,75:393-398.
[8] Xu J G, Deshpande R D, Pan J, et al. Electrode Side Reactions, Capacity Loss and Mechanical Degradation in Lithium-Ion Batteries[J]. Journal of The Electrochemical Society,2015,162(10):A2026-A2035.
[9] Noh H J, Youn S, Yoon C S, et al. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2(x=1/3,0.5,0.6,0.7,0.8 and 0.85) cathode material for lithium ion battery[J]. Journal of Power Sources,2013,233:121-130.
[10] Fulvio P F, Veith G M, Adcock J L, et al. Fluorination of “brick and mortar” soft-templated graphitic ordered mesoporous carbons for high power lithium-ion battery[J]. Journal of Materials Chemistry A,2013(1):9414-9417.
[11] Ohzuku T, Ueda A, Nagayama Y, et al. Comparative study of LiCoO2, LiNi1/2Co1/2O2 and LiNiO2 for 4-volt secondary lithium cells[J]. Electrochimica Acta, 1993,38:1159-1167.
[12] Whitfield P S, Davidson I J, Cranswick L M D, et al. Investigation of possible superstructure and cation disorder in the lithium battery cathode materical Li(Mn1/3Ni1/3Co1/3)O2 using neutron and anomalous dispersion powder diffraction [J]. Solid State Ionics,2005,176:463-471.
[13] Padhi K A, Nanjundawamy K S, Goodenough J B. Phospho-olivine as positive electrode materials for rechargeable lithium batteries [J]. Journal of The Electrochemical Society,1997,144:1188-1194.
[14] Verma P, Maire P, Novák P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries[J].Electrochimica Acta,2010,55(22):6332-6341.
[15] Li X Y, Choe S Y, Joe W T. A reduced order electrochemical and thermal model for a pouch type lithium ion polymer battery with LiNixMnyCo1-x-yO2/LiFePO4 blended cathode[J]. Journal of Power Sources,2015,294:545-555.
[16] Nan C Y, Lu J, Li L H, et al. Size and shape control of LiFePO4 nanocrystals for better lithium ion battery cathode materials [J]. Nano Research,2013,6(7),469-477.
[17] Zhao X, Zhuang Q C, Wu C, et al. Impedance Studies on the Capacity Fading Mechanism of Li(Ni0.5Co0.2Mn0.3)O2 Cathode with High-Voltage and High-Temperature[J]. Journal of The Electrochemical Society,2015,162(14):A2770-A2779.
[18] Li J(李佳), Xie X H(谢晓华), Xia B J(夏保佳), et al. Fading mechanisms of a graphite/Li(Ni1/3Co1/3Mn1/3)O2 cell after storage[J]. Battery Bimonthly(电池),2011,41(6):293-296.
[19] Hayashi T, Okada J, Toda E, et al. Degradation Mechanism of LiNi0.82Co0.15Al0.03O2 Positive Electrodes of a Lithium-Ion Battery by a Long-Term Cycling Test[J]. Journal of The Electrochemical Society,2014,161(6):A1007-A1011.
[20] Agubra V A, Fergus J W, Fu R J, et al. Analysis of effects of the state of charge on the formation and growth of the deposit layer on graphite electrode of pouch type lithium ion polymer batteries[J]. Journal of Power Sources,2014,270:213-220.
[21] Li Y, Bettge M, Polzin B, et al. Understanding long-term cycling performance of Li1.2Ni0.15Mn0.55Co0.1O2-graphite lithium-ion cells[J]. Journal of The Electrochemical Society,2013,160(5):A3006-A3019.
[22] Mohanty D, Li J L, Nagpure S C, et al. Understanding the structure and structural degradation mechanisms in high-voltage, lithium-manganese-rich lithium-ion battery cathode oxides: A review of materials diagnostics[J]. MRS Energy&Sustainability:A Review Journal,2015,16:1-24.
[23] Sun G H, Sui T, Song B H, et al. On the fragmentation of active material secondary particles in lithium ion battery cathodes induced by charge cycling[J]. Extreme Mechanics Letters,2016,9:449-458.
[24] Li J, Downie L E, Ma L, et al. Study of the Failure Mechanisms of LiNi0.8Mn0.1Co0.1O2 Cathode Material for Lithium Ion Batteries[J]. Journal of The Electrochemical Society,2015,162(7):A1401-A1408.
[25] Song H G, Park Y J. LiLaPO4-coated Li[Ni0.5Co0.2Mn0.3]O2 and AlF3-coated Li[Ni0.5Co0.2Mn0.3]O2 blend composite for lithium ion batteries[J]. Materials Research Bulletin,2012,47:2843-2846.
[26] Zhuang Q C, Wei T, Du L L, et al. An Electrochemical Impedance Spectroscopic Study of the Electronic and Ionic Transport Properties of Spinet LiMn2O4[J]. J. Physical Chemistry C,2010,114(18),8614-8621.
[27] Qiu X Y, Zhuang Q C, Zhang Q Q, et al. Electrochemical and electronic properties of LiCoO2 cathode investigated by galvanostatic cycling and EIS[J]. Phys. Chem. Chem. Phys.,2012,14(8),2617-2630.
[28] Yoshida T, Takahashi M, Morikawa S, et al. Degradation Mechanism and Life Prediction of Lithium-Ion Batteries[J]. Journal of The Electrochemical Society,2006,153(3):A576-A582.
[29] Liu W(刘文), Wang M(王苗), Chen J T(陈继涛), et al. Synthesis of LiNi0.5Co0.2Mn0.3O2 for Lithium Ion Batteries and the Mechanism of Capacity Fading at High Temperature[J]. Journal of Electrochemistry(电化学),2012,18(2):118-124.
[30] Yang Z X, Song Z L, Chu G, et al. Surface modification of LiCo1/3Ni1/3Mn1/3O2 with CoAl-MMO for lithium-ion batteries [J]. Journal of Materials Science, 2012, 47: 4205-4209.
[31] Jung S K, Gwon H, Hong J, et al. Understanding the Degradation Mechanisms of LiNi0.5Co0.2Mn0.3O2 Cathode Material in Lithium Ion Batteries[J]. Advanced Energy Materials,2014,4:1-7.
[32] Hausbrand R, Cherkashinin G, Ehrenberg H, et al. Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials:Methodology, insights and novel approaches[J]. Materials Science and Engineering B,2015,192:3-25.
[33] Wu L M, Xiao X H, Wen Y H, et al. Three-dimensional finite element study on stress generation in synchrotron X-ray tomography reconstructed nickel-manganese-cobalt based half cell[J]. Journal of Power Sources,2016,336:8-18. |