[1] Choi, N.-S., Chen, Z., Freunberger, S. A., et al. Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors[J]. Angewandte Chemie International Edition, 2012, 51(40): 9994-10024.
[2] Goodenough, J. B., Kim, Youngsik. Challenges for Rechargeable Li Batteries[J]. Chemistry of Materials, 2009, 22(3): 587-603.
[3] 许梦清. 锂离子电池电解质溶液功能组分的作用机理及其应用[M]. 华南理工大学, 2009.
[4] Zhang, S. S. A review on electrolyte additives for lithium-ion batteries[J]. Journal of Power Sources, 2006, 162(2): 1379-1394.
[5] Yao, X. L., Xie, S., Chen, C. H., et al. Comparative study of trimethyl phosphite and trimethyl phosphate as electrolyte additives in lithium ion batteries[J]. Journal of Power Sources, 2005, 144(1): 170-175.
[6] Wang, X., Yamada, C., Naito, H., et al. High-Concentration Trimethyl Phosphate-Based Nonflammable Electrolytes with Improved Charge–Discharge Performance of a Graphite Anode for Lithium-Ion Cells[J]. Journal of The Electrochemical Society, 2006, 153(1): A135-A139.
[7] Xiang, H. F., Lin, H. W., Yin, B., et al. Effect of activation at elevated temperature on Li-ion batteries with flame-retarded electrolytes[J]. Journal of Power Sources, 2010, 195(1): 335-340.
[8] Wang, X., Yasukawa, E., Kasuya , S. Nonflammable Trimethyl Phosphate Solvent-Containing Electrolytes for Lithium-Ion Batteries: I. Fundamental Properties[J]. Journal of The Electrochemical Society, 2001, 148(10): A1058-A1065.
[9] Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chemical Reviews, 2004, 104(10): 4303-4417.
[10] Izquierdo-Gonzales, S., Li, W., Lucht, B. L. Hexamethylphosphoramide as a flame retarding additive for lithium-ion battery electrolytes[J]. Journal of Power Sources, 2004, 135(1–2): 291-296.
[11] Zhou, D., Li, W., Tan, C., et al. Cresyl diphenyl phosphate as flame retardant additive for lithium-ion batteries[J]. Journal of Power Sources, 2008, 184(2): 589-592.
[12] Gao, K., Song, X. H., Shi, Y., et al. Electrochemical performances and interfacial properties of graphite electrodes with ionic liquid and alkyl-carbonate hybrid electrolytes[J]. Electrochimica Acta, 2013, 114: 736-744.
[13] Hofmann, A., Schulz, M., Indris, S., et al. Mixtures of Ionic Liquid and Sulfolane as Electrolytes for Li-Ion Batteries[J]. Electrochimica Acta, 2014, 147: 704-711.
[14] Hess, S., Wohlfahrt-Mehrens, M., Wachtler, M. Flammability of Li-Ion Battery Electrolytes: Flash Point and Self-Extinguishing Time Measurements[J]. Journal of The Electrochemical Society, 2015, 162(2): A3084-A3097.
[15] MacNeil, D. D., Hatchard, T. D., Dahn, J. R. A Comparison Between the High Temperature Electrode/Electrolyte Reactions of Li x CoO2 and Li x Mn2O4[J]. Journal of The Electrochemical Society, 2001, 148(7): A663-A667.
[16] Jhu, C.-Y., Wang, Y.-W., Wen, C.-Y., et al. Thermal runaway potential of LiCoO2 and Li(Ni1/3Co1/3Mn1/3)O2 batteries determined with adiabatic calorimetry methodology[J]. Applied Energy, 2012, 100(0): 127-131. |