欢迎访问《电化学》期刊官方网站,今天是 分享到:

电化学 ›› 2020, Vol. 26 ›› Issue (6): 777-788.  doi: 10.13208/j.electrochem.200507

• 研究论文 • 上一篇    下一篇

NCA三元锂离子电池分荷电状态循环的热特性和容量衰退研究

王存1#, 张维江1,5#, 何腾飞1#, 雷博2, 史尤杰2, 郑耀东3, 罗伟林4, 蒋方明1,*()   

  1. 1. 中国科学院广州能源研究所,中国科学院可再生能源重点实验室,广东省新能源和可再生能源研究开发与应用重点实验室,广东 广州 510640
    2. 直流输电技术国家重点实验室(南方电网科学研究院有限责任公司),广东 广州 510063
    3. 中国南方电网有限责任公司,广东 广州 510063
    4. 上海动力储能电池系统工程技术有限公司,上海 200241
    5. 中国科学院大学,北京 100049
  • 收稿日期:2020-05-07 修回日期:2020-06-12 出版日期:2020-12-28 发布日期:2020-06-15
  • 通讯作者: 蒋方明 E-mail:jiangfm@ms.giec.ac.cn
  • 基金资助:
    国家重点研发计划课题No(2018YFB0905300);国家重点研发计划课题No(2018YFB0905303);广东省新能源和可再生能源研究开发与应用重点实验室基金资助No(E039030101);广东省新能源和可再生能源研究开发与应用重点实验室基金资助No(Y909jh1)

Degradation and Thermal Characteristics of LiNi0.8Co0.15Al0.05O2/Graphite Lithium Ion Battery after Different State of Charge Ranges Cycling

WANG Cun1#, ZHANG Wei-jiang1,5#, HE Teng-fei1#, LEI Bo2, SHI You-jie2, ZHENG Yao-dong3, LUO Wei-lin4, JIANG Fang-ming1,*()   

  1. 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
    2. State Key Laboratory of HVDC, Electric Power Research Institute, China Southern Power Grid, Guangzhou 510063
    3. China Southern Power Grid,Guangzhou 510063
    4. Shanghai Power& Energy Storage Battery System Engineering Technology Co. Ltd., Shanghai 200241;
    5. University of Chinese Academy of Sciences, Beijing 100049
  • Received:2020-05-07 Revised:2020-06-12 Online:2020-12-28 Published:2020-06-15
  • Contact: JIANG Fang-ming E-mail:jiangfm@ms.giec.ac.cn

摘要:

层状三元材料LiNi0.8Co0.15Al0.05O2(NCA)具有高能量密度和高比容量,在电动汽车领域占据重要地位.但是较差的容量保持率和热安全问题限制了其应用. 本文研究了18650型NCA/graphite(2.4 Ah)锂电池分区间循环容量衰退机理和热行为. 所考虑的荷电状态(state of charge,SOC)区间有0% ~ 20%(低)、20% ~ 70%(中)、70% ~ 100%(高)及0% ~ 100%(全)四个区间. 为了获得电池在不同SOC区间循环后衰减状况,以100个循环为一个周期,每个循环周期结束后,在25 oC下测试四个电池的基础特性,包括容量、容量增量(incremental capacity,IC)、电阻及电化学阻抗谱(electrochemical impedance spectroscopy, EIS),同时监测电池放电时的温度来讨论电池不同区间循环后的热行为. 测试结果表明,电池在全区间循环会降低电池寿命,而在非全区间循环的电池都能一定程度上减缓电池衰老的速度. 另外,全区间循环热特性最差而中端循环则表现出较好的热性能,对容量增量曲线分析发现,在高中低区间的性能衰退的主要原因是活性锂离子的损失,而在全区间还包括活性材料的损失和反应内阻的增大.

关键词: 锂离子电池, 镍-钴-铝三元正极材料, 循环区间, 容量增量分析法, 电化学阻抗法, 衰退机理

Abstract:

The LiNi0.8Co0.15Al0.05O2 (NCA) cathode exhibits high energy density and large reversible capacity, which plays an essential role in the field of electric vehicles (EVs). However, low capacity retention and poor thermal stability limit its application. Few literatures are found for the capacity degradation mechanism of NCA/graphite batteries at home and abroad. The different state of charge (SOC) ranges cycle degradation behaviors of 18650-type NCA/graphite (2.4 Ah) battery were studied in this paper. The SOC ranges considered were 0% ~ 20% (low), 20% ~ 70% (medium), 70% ~ 100% (high), and 0% ~ 100% (whole). To obtain the states of the batteries being cycled in different SOC ranges, the basic characteristics of the four batteries, including capacity, incremental capacity (IC), internal resistance, and electrochemical impedance spectroscopy (EIS), were tested at 25 oC before and after every 100-cycle up to 400 cycles. At the same time, the surface temperature of the batteries during discharging was monitored to analyze the thermal characteristics. A detailed analysis for the IC curve of NCA/graphite was performed, making the mechanism of capacity degradation more clear. The results show that the battery life would be shortened after the whole SOC range cycling and the battery aging rate would be reduced to a certain extent upon cycled in the partial range. In addition, the battery thermal characteristic became the worst after the whole SOC range cycling, but the battery thermal performance became the best after the medium SOC range cycling. Analyzing IC data reveals that the main reason for the performance degradation of batteries in the high, medium and low SOC ranges cycling may be the loss of active lithium ions, and that in the high SOC range cycling may also include the loss of active materials and the increase of reaction internal resistance.

Key words: Key Words: lithium ion battery, nickel-cobalt-aluminum ternary cathode material, cycle interval, incremental capacity analysis, electrochemical impedance spectroscopy, degradation mechanism

中图分类号: