[1] Armand M, Tarascon J. M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657.[2] Kang B, Ceder G. Battery materials for ultrafast charging and discharging[J]. Nature, 2009, 458(7235): 190-193.[3] Sun Y K, Myung S T, Park B C, et al. High-energy cathode material for long-life and safe lithium batteries[J]. Nature Materials, 2009, 8(4): 320-324.[4] Gaubicher J, Wurm C, Goward G, et al. Rhombohedral form of Li3V2(PO4)3 as a cathode in Li-ion batteries[J]. Chemistry of Materials, 2000, 12(11): 3240-3242.[5] Huang H, Yin S C, Kerr T, et al. Nanostructured Composites: A high capacity, fast rate Li3V2(PO4)3/carbon cathode for rechargeable lithium batteries[J]. Advanced Materials, 2002, 14(21): 1525-1528.[6] Li Y, Liu X, Yan J. Study on synthesis routes and their influences on chemical and electrochemical performances of Li3V2(PO4)3/carbon[J]. Electrochimica Acta, 2007, 53(2): 474-479.[7] Li Y Z, Zhou Z, Gao X P, et al. A promising sol-gel route based on citric acid to synthesize Li3V2(PO4)3/carbon composite material for lithium ion batteries[J]. Electrochimica Acta, 2007, 52(15): 4922-4926.[8] Liu H W, Cheng C X, Huang X T, et al. Hydrothermal synthesis and rate capacity studies of Li3V2(PO4)3 nanorods as cathode material for lithium-ion batteries[J]. Electrochimica Acta, 2010, 55(28): 8461-8465.[9] Yang G, Liu H D, Ji H M, et al. Temperature-controlled microwave solid-state synthesis of Li3V2(PO4)3 as cathode materials for lithium batteries[J]. Journal of Power Sources, 2010, 195(16): 5374-5378.[10] Yin S C, Grondey H, Strobel P, et al. Electrochemical property: Structure relationships in monoclinic Li3-yV2(PO4)3[J]. Journal of the American Chemical Society, 2003, 125(34): 10402-10411. |