电化学(中英文) ›› 2026, Vol. 32 ›› Issue (1): 2515008. doi: 10.61558/2993-074X.3579
王明理a,c,#, 苏雪颖a,#, 单政翔a,#, 杨书哲c, 郭恒瑞a, 罗浩a,*(
), 晁栋梁b,*(
)
收稿日期:2025-06-08
修回日期:2025-07-26
接受日期:2025-08-19
发布日期:2025-08-19
出版日期:2026-01-28
通讯作者:
罗浩,晁栋梁
E-mail:luohao@xmut.edu.cn;chaod@fudan.edu.cn
Ming-Li Wanga,c,#, Xue-Ying Sua,#, Zheng-Xiang Shana,#, Shu-Zhe Yangc, Heng-Rui Guoa, Hao Luoa,*(
), Dong-Liang Chaob,*(
)
Received:2025-06-08
Revised:2025-07-26
Accepted:2025-08-19
Online:2025-08-19
Published:2026-01-28
Contact:
Hao Luo, Dong-Liang Chao
E-mail:luohao@xmut.edu.cn;chaod@fudan.edu.cn
About author:First author contact:#These authors contributed equally to this work.
摘要:
水系钠离子电池因其较高的安全性而在水系电池领域备受关注。然而,水基电解液的特性降低了负极材料工作电位以及电化学稳定性,进而阻碍了水系钠离子电池的大规模应用。钛酸亚磷酸盐(NaTi2(PO4)3,NTP)因其出色的电化学性能和可调的结构,被认为是最具实用化前景的用于水系钠离子电池的负极极材料之一。近年来,围绕NTP的研究取得了显著进展,但关于其研究现状和未来发展方向的综述仍然缺乏。在此背景下,本文首先介绍了NTP的基本特性,并深入分析了其实际应用所面临的挑战。随后,全面概述了提升NTP电化学性能的改性策略。最后,基于当前的研究状况和实际需求,提出了推动实现水系钠离子电池实际应用的建议和展望。本综述旨在为未来研究提供方向指引,推动从基础材料创新逐步过渡到工业应用,进而加速水系钠离子电池的大规模商业化进程。
王明理, 苏雪颖, 单政翔, 杨书哲, 郭恒瑞, 罗浩, 晁栋梁. 水系钠离子电池钛酸亚磷酸盐阳极:进展和展望[J]. 电化学(中英文), 2026, 32(1): 2515008.
Ming-Li Wang, Xue-Ying Su, Zheng-Xiang Shan, Shu-Zhe Yang, Heng-Rui Guo, Hao Luo, Dong-Liang Chao. The NTP Anode for Aqueous Sodium Ion Batteries: Recent Advances and Future Perspectives[J]. Journal of Electrochemistry, 2026, 32(1): 2515008.
| [1] |
Tao Z, Chen J. Secondary battery systems for energy storage in smart grids[J]. Chin. Sci. Bull., 2012, 57(27): 2545-2560. https://doi.org/10.1360/972011-2190.
doi: 10.1360/972011-2190 URL |
| [2] |
Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935. https://doi.org/10.1126/science.1212741.
doi: 10.1126/science.1212741 URL pmid: 22096188 |
| [3] |
Wang Y G, Yi J, Xia Y Y. Recent progress in aqueous lithium-ion batteries[J]. Adv. Energy Mater., 2012, 2(7): 830-840. https://doi.org/10.1002/aenm.201200065.
doi: 10.1002/aenm.v2.7 URL |
| [4] |
Kundu D, Talaie E, Duffort V, Nazar L F. The emerging chemistry of sodium ion batteries for electrochemical energy storage[J]. Angew. Chem. Int. Ed., 2015, 54(11): 3431-3448. https://doi.org/10.1002/anie.201410376.
doi: 10.1002/anie.201410376 URL pmid: 25653194 |
| [5] |
Yu L, Li J, Wang G R, Peng B, Liu R, Shi L, Zhang G Q. Rational design of unique mose-carbon nanobowl particles endows superior alkali metal-ion storage beyond lithium[J]. ACS Appl. Mater. Interfaces, 2021, 13(51): 61116-61128. https://doi.org/10.1021/acsami.1c18234.
doi: 10.1021/acsami.1c18234 URL |
| [6] |
Hu X J, Gao F F, Xiao Y, Wang D P, Gao Z H, Huang Z F, Ren S D, Jiang N, Wu S T. Advancements in the safety of lithium-ion battery: The trigger, consequence and mitigation method of thermal runaway[J]. Chem. Eng. J., 2024, 481: 148450. https://doi.org/10.1016/j.cej.2023.148450.
doi: 10.1016/j.cej.2023.148450 URL |
| [7] | Xu J J, Cai X Y, Cai S M, Shao Y X, Hu C, Lu S R, Ding S. High-energy lithium-ion batteries: Recent progress and a promising future in applications[J]. Energy Environ. Mater., 2023, 6(5): 12450. https://doi.org/10.1002/eem2.12450. |
| [8] |
Bin D, Wang F, Tamirat A G, Suo L M, Wang Y G, Wang C S, Xia Y Y. Progress in aqueous rechargeable sodium-ion batteries[J]. Adv. Energy Mater., 2018, 8(17): 1703008. https://doi.org/10.1002/aenm.201703008.
doi: 10.1002/aenm.v8.17 URL |
| [9] |
Zhang H, Liu X, Li H H, Hasa I, Passerini S. Challenges and strategies for high-energy aqueous electrolyte rechargeable batteries[J]. Angew. Chem. Int. Ed., 2021, 60(2): 598-616. https://doi.org/10.1002/anie.202004433.
doi: 10.1002/anie.v60.2 URL |
| [10] |
Yue J M, Suo L M. Progress in rechargeable aqueous alkali-ion batteries in china[J]. Energ. Fuel., 2021, 35(11): 9228-9239. https://doi.org/10.1021/acs.energyfuels.1c00817.
doi: 10.1021/acs.energyfuels.1c00817 URL |
| [11] | Liu M, Ao H, Jin Y, Hou Z, Zhang X, Zhu Y, Qian Y. Aqueous rechargeable sodium ion batteries: Developments and prospects[J]. Mater. Today Energy, 2020, 17: 100432. https://doi.org/10.1016/j.mtener.2020.100432. |
| [12] |
Suo L, Borodin O, Wang Y, Rong X, Sun W, Fan X, Xu S, Schroeder M A, Cresce A V, Wang F, Yang C, Hu Y S, Xu K, Wang C. “Water-in-salt” electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting[J]. Adv. Energy Mater., 2017, 7(21): 1701189. https://doi.org/10.1002/aenm.201701189.
doi: 10.1002/aenm.v7.21 URL |
| [13] |
Liu J L, Xu C H, Chen Z, Ni S B, Shen Z X. Progress in aqueous rechargeable batteries[J]. Green Energy Environ., 2018, 3(1): 20-41. https://doi.org/10.1016/j.gee.2017.10.001.
doi: 10.1016/j.gee.2017.10.001 URL |
| [14] |
Huang Y X, Zhao L Z, Li L, Xie M, Wu F, Chen R J. Electrolytes and electrolyte/electrode interfaces in sodium-ion batteries: From scientific research to practical application[J]. Adv. Mater., 2019, 31(21): 1808393. https://doi.org/10.1002/adma.201808393.
doi: 10.1002/adma.v31.21 URL |
| [15] | Pascal G E, Fouletier M. Electrochemical intercalation of sodium in graphite[J]. Solid State Ionics, 1988, 28: 1172-1175. https://doi.org/10.1016/0167-2738(88)90351-7. |
| [16] |
Whitacre J F, Tevar A, Sharma S. Na4Mn9O18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device[J]. Electrochem. Commun., 2010, 12(3): 463-466. https://doi.org/10.1016/j.elecom.2010.01.020.
doi: 10.1016/j.elecom.2010.01.020 URL |
| [17] |
Song W X, Ji X B, Zhu Y R, Zhu H J, Li F Q, Chen J, Lu F, Yao Y P, Banks C E. Aqueous sodium-ion battery using a Na3V2(PO4)3 electrode[J]. Chemelectrochem, 2014, 1(5): 871-876. https://doi.org/10.1002/celc.201300248.
doi: 10.1002/celc.v1.5 URL |
| [18] |
Hou Z G, Zhang X Q, Chen J W, Qian Y T, Chen L F, Lee P S. Towards high-performance aqueous sodium ion batteries: Constructing hollow NaTi2(PO4)3@C nanocube anode with Zn metal-induced pre-sodiation and deep eutectic electrolyte[J]. Adv. Energy Mater., 2022, 12(14): 2104053. https://doi.org/10.1002/aenm.202104053.
doi: 10.1002/aenm.v12.14 URL |
| [19] |
Zhao Y, He J, Hu L T, Yang J, Yan C, Shi M J. Carboxyl-substituted organic molecule assembled with Mxene nanosheets for boosting aqueous Na+ storage[J]. Small, 2023, 19(47): 2304182. https://doi.org/10.1002/smll.202304182.
doi: 10.1002/smll.v19.47 URL |
| [20] |
Sawicki M, Shaw L L. Advances and challenges of sodium ion batteries as post lithium ion batteries[J]. RSC Adv., 2015, 5(65): 53129-53154. https://doi.org/10.1039/C5RA08321D.
doi: 10.1039/C5RA08321D URL |
| [21] |
Gong D C, Wei C Y, Liang Z Z, Tang Y B. Recent advances on sodium‐ion batteries and sodium dual‐ion batteries: State‐of‐the‐art Na+ host anode materials[J]. Small Sci., 2021, 1(6): 2100014. https://doi.org/10.1002/smsc.202100014.
doi: 10.1002/smsc.v1.6 URL |
| [22] |
Qiao S Y, Zhou Q W, Ma M, Liu H K, Dou S X, Chong S K. Advanced anode materials for rechargeable sodium-ion batteries[J]. ACS Nano, 2023, 17(12): 11220-11252. https://doi.org/10.1021/acsnano.3c02892.
doi: 10.1021/acsnano.3c02892 URL pmid: 37289640 |
| [23] | Yang M R, Luo J, Guo X N, Chen J C, Cao Y L, Chen W H. Aqueous rechargeable sodium-ion batteries: From liquid to hydrogel[J]. Batteries-Basel, 2022, 8(10): 8100180. https://doi.org/10.3390/batteries8100180. |
| [24] |
Xu C L, Liu Y, Han S, Chen Z, Ma Y Z, Guo Q B, Zhang P, Yang W Q, Yang C, Zhao J M, Hu Y S. Rational design of aqueous Na ion batteries toward high energy density and long cycle life[J]. J. Am. Chem. Soc., 2025, 147(8): 7039-7049. https://doi.org/10.1021/jacs.4c18168.
doi: 10.1021/jacs.4c18168 URL pmid: 39951408 |
| [25] |
Qiu Y G, Yu Y Y, Xu J, Liu Y, Ou M Y, Sun S X, Wei P, Deng Z, Xu Y, Fang C, Li Q, Han J T, Huang Y H. Redox potential regulation toward suppressing hydrogen evolution in aqueous sodium-ion batteries: Na1.5Ti1.5Fe0.5(PO4)3[J]. J. Mater. Chem. A., 2019, 7(43): 24953-24963. https://doi.org/10.1039/C9TA08829F.
doi: 10.1039/C9TA08829F URL |
| [26] |
Yao H, Gao Y, Lin X H, Zhang H, Li L, Chou S L. Prussian blue analogues for aqueous sodium-ion batteries: Progress and commercialization assessment[J]. Adv. Energy Mater., 2024, 14(32): 2401984. https://doi.org/10.1002/aenm.202401984.
doi: 10.1002/aenm.v14.32 URL |
| [27] |
Zhang Y, Yuan C L, Ye K, Jiang X, Yin J L, Wang G L, Cao D X. An aqueous capacitor battery hybrid device based on Na-ion insertion-deinsertion in λ-MnO2 positive electrode[J]. Electrochim. Acta, 2014, 148: 237-243. https://doi.org/10.1016/j.electacta.2014.10.052.
doi: 10.1016/j.electacta.2014.10.052 URL |
| [28] |
Rakočević L, Štrbac S, Potočnik J, Popović M, Jugović D, Simatović I S. The NaxMnO2 materials prepared by a glycine-nitrate method as advanced cathode materials for aqueous sodium-ion rechargeable batteries[J]. Ceram. Int., 2021, 47(4): 4595-4603. https://doi.org/10.1016/j.ceramint.2020.10.025.
doi: 10.1016/j.ceramint.2020.10.025 URL |
| [29] |
Yang W S, Wang B, Chen Q, Zhao Q, Zhang Q, Lu S S, Gao Y, Wang X X, Xie Q, Ruan Y J. Unravelling capacity fading mechanisms in sodium vanadyl phosphate for aqueous sodium-ion batteries[J]. J. Colloid Interface Sci., 2022, 627: 913-921. https://doi.org/10.1016/j.jcis.2022.07.108.
doi: 10.1016/j.jcis.2022.07.108 URL |
| [30] |
Wang Y Y, Liu D, Sun M L, Liu J P. Recent progress in electrode materials for aqueous sodium and potassium ion batteries[J]. Mater. Chem. Front., 2021, 5(20): 7384-7402. https://doi.org/10.1039/D1QM01011E.
doi: 10.1039/D1QM01011E URL |
| [31] |
Riza S A, Xu R G, Liu Q, Hassan M, Yang Q, Mu D B, Li L, Wu F, Key R B. A review of anode materials for sodium ion batteries[J]. New Carbon Mater., 2024, 39(5): 743-769. https://doi.org/10.1016/S1872-5805(24)60886-3.
doi: 10.1016/S1872-5805(24)60886-3 URL |
| [32] |
Jia Q X, Li Z Y, Ruan H L, Luo D W, Wang J J, Ding Z Y, Chen L N. A review of carbon anode materials for sodium-ion batteries: Key materials, sodium-storage mechanisms, applications, and large-scale design principles[J]. Molecules, 2024, 29(18): 4331. https://doi.org/10.3390/molecules29184331.
doi: 10.3390/molecules29184331 URL |
| [33] |
Chang G L, Zhao Y F, Dong L, Wilkinson D P, Zhang L, Shao Q S, Yan W, Sun X L, Zhang J J. A review of phosphorus and phosphides as anode materials for advanced sodium-ion batteries[J]. J. Mater. Chem. A., 2020, 8(10): 4996-5048. https://doi.org/10.1039/C9TA12169B.
doi: 10.1039/C9TA12169B URL |
| [34] |
Balogun M S, Luo Y, Qiu W T, Liu P, Tong Y X. A review of carbon materials and their composites with alloy metals for sodium ion battery anodes[J]. Carbon, 2016, 98: 162-178. https://doi.org/10.1016/j.carbon.2015.09.091.
doi: 10.1016/j.carbon.2015.09.091 URL |
| [35] |
He B, Yin K B, Gong W B, Xiong Y W, Zhang Q C, Yang J, Wang Z X, Wang Z, Chen M X, Man P, Coquet P, Yao Y G, Sun L T, Wei L. NaTi2(PO4)3 hollow nanoparticles encapsulated in carbon nanofibers as novel anodes for flexible aqueous rechargeable sodium-ion batteries[J]. Nano Energy, 2021, 82: 105764. https://doi.org/10.1016/j.nanoen.2021.105764.
doi: 10.1016/j.nanoen.2021.105764 URL |
| [36] | Rui X, Zhang X, Xu S, Tan H, Jiang Y, Gan L Y, Feng Y, Li C C, Yu Y. A low‐temperature sodium‐ion full battery: Superb kinetics and cycling stability[J]. Adv. Funct. Mater., 2020, 31(11): 1616-3028. https://doi.org/10.1002/adfm.202009458. |
| [37] |
Patra B, Hegde R, Natarajan A, Deb D, Sachdeva D, Ravishankar N, Kumar K, Gautam G S, Senguttuvan P. Stabilizing multi-electron NASICON-Na1.5N0.5Nb1.5(PO4)3 anode via structural modulation for long-life sodium-ion batteries[J]. Adv. Energy Mater., 2024, 14(17): 2304091. https://doi.org/10.1002/aenm.202304091.
doi: 10.1002/aenm.v14.17 URL |
| [38] | Xu G B, Yang L Y, Yan Z H, Huang Z K, Li X, Guo G C, Tian Y, Yang L W, Huang J Y, Liang Y R, Chou S L. Multiscale structural NaTi2(PO4)3 anode for sodium-ion batteries with long cycle, high areal capacity, and wide operation temperature[J]. Carbon Energ., 2024, 6(10): 2552. https://doi.org/10.1002/cey2.552. |
| [39] |
Pang G, Yuan C Z, Nie P, Ding B, Zhu J J, Zhang X G. Synthesis of NASICON-type structured NaTi2(PO4)3-graphene nanocomposite as an anode for aqueous rechargeable Na-ion batteries[J]. Nanoscale, 2014, 6(12): 6328-6334. https://doi.org/10.1039/C3NR06730K.
doi: 10.1039/c3nr06730k URL pmid: 24755904 |
| [40] |
Chen S Q, Wu C, Shen L F, Zhu C B, Huang Y Y, Xi K, Maier J, Yu Y. Challenges and perspectives for NASICON-type electrode materials for advanced sodium-ion batteries[J]. Adv. Mater., 2017, 29(48): 1700431. https://doi.org/10.1002/adma.201700431.
doi: 10.1002/adma.v29.48 URL |
| [41] | Li X N, Zhu X B, Liang J W, Hou Z G, Wang Y, Lin N, Zhu Y C, Qian Y T. Graphene-supported NaTi2(PO4)3 as a high rate anode material for aqueous sodium ion batteries[J]. J. Electrochem. Soc., 2014, 161(6): A1181-A1187. https://doi.org/10.1149/2.0081409jes. |
| [42] | Wu W, Yan J Y, Wise A, Rutt A, Whitacre J F. Using intimate carbon to enhance the performance of NaTi2(PO4)3 anode materials: Carbon nanotubes vs Graphite[J]. J. Electrochem. Soc., 2014, 161(4): A561-A567. https://doi.org/10.1149/2.059404jes. |
| [43] |
Mohamed A I, Whitacre J F. Capacity fade of NaTi2(PO4)3 in aqueous electrolyte solutions: Relating pH increases to long term stability[J]. Electrochim. Acta, 2017, 235: 730-739. https://doi.org/10.1016/j.electacta.2017.03.106.
doi: 10.1016/j.electacta.2017.03.106 URL |
| [44] |
Kim H, Hong J, Park K Y, Kim H, Kim S W, Kang K. Aqueous rechargeable Li and Na ion batteries[J]. Chem. Rev., 2014, 114(23): 11788-11827. https://doi.org/10.1021/cr500232y.
doi: 10.1021/cr500232y URL pmid: 25211308 |
| [45] |
Lei P, Liu K L, Wan X, Luo D X, Xiang X D. Ultrafast Na intercalation chemistry of Na2Ti3/2Mn1/2(PO4)3 nanodots planted in a carbon matrix as a low cost anode for aqueous sodium-ion batteries[J]. Chem. Commun., 2019, 55(4): 509-512. https://doi.org/10.1039/C8CC07668E.
doi: 10.1039/C8CC07668E URL |
| [46] | Cao F T, Shan X L, Wu J T, Chen Y X, Zhou Y, Wang W J, Zeng C L. Toward suppressing hydrogen evolution with enhanced performance for Bi‐modified NaTi2(PO4)3 anodes in aqueous Na‐ion batteries[J]. Batteries Supercaps., 2025: e202400767. https://doi.org/10.1002/batt.202400767. |
| [47] |
Hung T F, Lan W H, Yeh Y W, Chang W S, Yang C C, Lin J C. Hydrothermal synthesis of sodium titanium phosphate nanoparticles as efficient anode materials for aqueous sodium-ion batteries[J]. ACS Sustain. Chem. Eng., 2016, 4(12): 7074-7079. https://doi.org/10.1021/acssuschemeng.6b01962.
doi: 10.1021/acssuschemeng.6b01962 URL |
| [48] |
Zhang F, Li W F, Xiang X D, Sun M L. Nanocrystal‐assembled porous Na3MgTi(PO4)3 aggregates as highly stable anode for aqueous sodium‐ion batteries[J]. Chem-Eur J., 2017, 23(52): 12944-12948. https://doi.org/10.1002/chem.201703044.
doi: 10.1002/chem.201703044 URL pmid: 28771948 |
| [49] | Xu T, Zhao M S, Li Z, Su Z, Ren W, Yang S, Pol V G. A high rate and long cycling performance NaTi2(PO4)3 core-shell porous nanosphere anode for aqueous sodium-ion batteries[J]. Energy Technol., 2022, 10(11): 2200970. https://doi.org/10.1002/ente.202200970. |
| [50] |
Ding B, Li M Z, Zheng F Z, Ma Y Z, Song G S, Guan X L, Cao Y, Wen C. Synthesis and performance of NaTi2(PO4)3/VGCF@C anode composite material for aqueous sodium-ion batteries[J]. Batteries, 2023, 9(5): 265. https://doi.org/10.3390/batteries9050265.
doi: 10.3390/batteries9050265 URL |
| [51] |
Lu M L, Li T, Yang X Q, Liu Y, Xiang X D. A liquid-phase reaction strategy to construct aqueous sodium-ion batteries anode with enhanced redox reversibility and cycling stability[J]. Chem. Eng. Sci., 2023, 274: 118700. https://doi.org/10.1016/j.ces.2023.118700.
doi: 10.1016/j.ces.2023.118700 URL |
| [52] |
Liu Z X, An Y F, Pang G, Dong S Y, Xu C Y, Mi C H, Zhang X G. Tin modified NaTi2(PO4)3as an anode material for aqueous sodium ion batteries[J]. Chem. Eng. J., 2018, 353: 814-823. https://doi.org/10.1016/j.cej.2018.07.159.
doi: 10.1016/j.cej.2018.07.159 URL |
| [53] | Stüwe T, Werner D, Stock D, Thurner C W, Thöny A, Grießer C, Loerting T, Portenkirchner E. Enhanced electrochemical performance of NTP/C with rutile TiO2 coating, as anode material for sodium‐ion batteries[J]. Batteries Supercaps., 2023, 6(10): e202300228. https://doi.org/10.1002/batt.202300228. |
| [54] |
Kitajou A, Yamashita M, Kobayashi W, Okada M, Nanami T, Muto S. Anode properties of NaTi2(PO4)3 prepared by adding excess Na2CO3 for aqueous sodium-ion batteries[J]. ACS Appl. Energy Mater., 2022, 5(8): 9587-9594. https://doi.org/10.1021/acsaem.2c01212.
doi: 10.1021/acsaem.2c01212 URL |
| [55] |
He B, Man P, Zhang Q C, Fu H L, Zhou Z Y, Li C W, Li Q L, Wei L, Yao Y G. All binder-free electrodes for high-performance wearable aqueous rechargeable sodium-ion batteries[J]. Nano-Micro Lett., 2019, 11(1): 101. https://doi.org/10.1007/s40820-019-0332-7.
doi: 10.1007/s40820-019-0332-7 URL |
| [56] |
Luo D X, Lei P, Huang Y X, Tian G R, Xiang X D. Improved electrochemical performance of graphene-integrated NaTi2(PO4)3/C anode in high-concentration electrolyte for aqueous sodium-ion batteries[J]. J. Electroanal. Chem., 2019, 838: 66-72. https://doi.org/10.1016/j.jelechem.2019.02.057.
doi: 10.1016/j.jelechem.2019.02.057 URL |
| [57] |
Han J, Zarrabeitia M, Mariani A, Jusys Z, Hekmatfar M, Zhang H, Geiger D, Kaiser U, Behm R J, Varzi A, Passerini S. Halide-free water-in-salt electrolytes for stable aqueous sodium-ion batteries[J]. Nano Energy, 2020, 77: 105176. https://doi.org/10.1016/j.nanoen.2020.105176.
doi: 10.1016/j.nanoen.2020.105176 URL |
| [58] |
Peng D D, Sun R T, Han J, Zhao T L, Tian R J, Zhang A R, Zhang Y C, You Y. A low-concentrated electrolyte with a 3.5 V electrochemical stability window, made by restructuring the H-bond network, for high-energy and long-life aqueous sodium-ion batteries[J]. ACS Energy Lett., 2024, 9(12): 6215-6224. https://doi.org/10.1021/acsenergylett.4c02901.
doi: 10.1021/acsenergylett.4c02901 URL |
| [59] |
Liu T T, Wu H, Du X F, Wang J Z, Chen Z, Wang H, Sun J R, Zhang J J, Niu J P, Yao L S, Zhao J W, Cui G L. Water-locked eutectic electrolyte enables long-cycling aqueous sodium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2022, 14(29): 33041-33051. https://doi.org/10.1021/acsami.2c04893.
doi: 10.1021/acsami.2c04893 URL |
| [60] |
Mohamed A I, Whitacre J F. Capacity fade of NaTi2(PO4)3 in aqueous electrolyte solutions: Relating pH increases to long term stability[J]. Electrochim. Acta, 2017, 235: 730-739. https://doi.org/10.1016/j.electacta.2017.03.106.
doi: 10.1016/j.electacta.2017.03.106 URL |
| [61] |
He Y T, Chen H Q, Wang Y J, Zhang Y M, Hou L R, Jiang R Y, Yuan C Z. Boosting sodium-storage behaviors of NASICON-type NaTi2(PO4)3 anode by synergistic modulations in both materials and electrolytes towards aqueous Na-ion batteries[J]. Electrochim. Acta, 2023, 447: 142128. https://doi.org/10.1016/j.electacta.2023.142128.
doi: 10.1016/j.electacta.2023.142128 URL |
| [62] |
Kitajou A, Mitsuyasu T, Nagai T, Yoshida K, Kobayashi W. NaClO4 ethylene glycol-water binary solution as an electrolyte for aqueous sodium ion batteries[J]. Electrochemistry, 2023, 91(11): 117002. https://doi.org/10.5796/electrochemistry.23-00086.
doi: 10.5796/electrochemistry.23-00086 URL |
| [63] | Wang M J, Zhao J J, Zhang Y Y, Liu Y Y, Ji W, Xiang X D. Electrolyte‐salts regulated hydrogen‐bonding configuration and interphase formation achieving highly stable anode for rechargeable aqueous sodium‐ion batteries[J]. Small, 2024, 20(52): 2407961. https://doi.org/10.1002/smll.202407961. |
| [64] |
Nian Q S, Liu S, Liu J, Zhang Q, Shi J, Liu C, Wang R, Tao Z L, Chen J. All-climate aqueous dual-ion hybrid battery with ultrahigh rate and ultralong life performance[J]. ACS Appl. Energy Mater., 2019, 2(6): 4370-4378. https://doi.org/10.1021/acsaem.9b00566.
doi: 10.1021/acsaem.9b00566 URL |
| [65] |
Gou S Y, Zhang X Y, Xu Y H, Tang J H, Ji Y Y, Imran M, Pan L, Li J, Liu B-T. Inhibiting dissolution strategy achieving high-performance sodium titanium phosphate hybrid anode in seawater-based dual-ion battery[J]. J. Colloid Interface Sci., 2024, 675: 429-437. https://doi.org/10.1016/j.jcis.2024.07.022.
doi: 10.1016/j.jcis.2024.07.022 URL |
| [66] |
Zhang Q C, Man P, He B, Li C W, Li Q L, Pan Z H, Wang Z X, Yang J, Wang Z, Zhou Z Y, Lu X H, Niu Z Q, Yao Y, Wei L. Binder-free NaTi2(PO4)3 anodes for high-performance coaxial-fiber aqueous rechargeable sodium-ion batteries[J]. Nano Energy, 2020, 67: 104212. https://doi.org/10.1016/j.nanoen.2019.104212.
doi: 10.1016/j.nanoen.2019.104212 URL |
| [67] |
Zhao P, Yang X L, Liu Q C, Zhu J, Yang S D, Chen L, Zhang Q. Carbon-incorporated NaTi2(PO4)3on carbon cloth as a binder-free anode material for high-performance aqueous sodium-ion hybrid capacitors[J]. J. Porous Mater., 2024, 31(5): 1905-1913.10. https://doi.org/1007/s10934-024-01650-4.
doi: 10.1007/s10934-024-01650-4 URL |
| [1] | 游章海, 卢定泽, Kiran Kumar Kondamareddy, 顾文举, 成鹏飞, 杨静萱, 郑睿, 王红梅. MXene复合材料的制备及其改性策略在电化学储能中的应用[J]. 电化学(中英文), 2025, 31(5): 2418001-. |
| [2] | 郑建明, 张静文, 焦天鹏. 铜取代型Li2Ni1-xCuxO2正极补锂剂提升石墨/磷酸铁锂电池循环寿命[J]. 电化学(中英文), 2025, 31(2): 2408301-. |
| [3] | 范佳琪, 宋焕巧, 安佳莹, 阿依达娜·阿曼太, 陈默. 碳限域Li3VO4纳米材料的制备及其储锂性能[J]. 电化学(中英文), 2023, 29(11): 211203-. |
| [4] | 殷秀平, 赵玉峰, 张久俊. 钠离子电池硬碳基负极材料的研究进展[J]. 电化学(中英文), 2023, 29(10): 2204301-. |
| [5] | 陈思, 郑淞生, 郑雷铭, 张叶涵, 王兆林. 水热法制备锂电池Si@C负极材料的工艺优化研究[J]. 电化学(中英文), 2022, 28(8): 2112221-. |
| [6] | 贠潇如, 陈宇方, 肖培涛, 郑春满. 关于水系锌离子电池中无氧钒基正极材料的综述[J]. 电化学(中英文), 2022, 28(11): 2219004-. |
| [7] | 李姝谨, 曹志康, 王文凯, 张晓菡, 向兴德. 硫酸盐功能电解液增强水系钠离子电池NaTi2(PO4)3/C负极材料电化学性能的研究[J]. 电化学(中英文), 2021, 27(6): 605-613. |
| [8] | 段明涛, 蒙延双, 张红帅. Ni3S2@碳纳米管复合材料的制备及其储钠性能[J]. 电化学(中英文), 2020, 26(6): 850-858. |
| [9] | 李浩秒, 周浩, 王康丽, 蒋凯. 液态金属电极的电化学储能应用[J]. 电化学(中英文), 2020, 26(5): 663-682. |
| [10] | 杨裕生. 电化学储能研究22年回顾[J]. 电化学(中英文), 2020, 26(4): 443-463. |
| [11] | 陈嘉卉, 钟晓斌, 何超, 王晓晓, 许清池, 李剑锋. 中空核壳结构Ni1.2Co0.8P@N-C钠离子电池负极材料的制备及拉曼研究[J]. 电化学(中英文), 2020, 26(3): 328-337. |
| [12] | 张文强, 于波. 高温固体氧化物电解制氢技术发展现状与展望[J]. 电化学(中英文), 2020, 26(2): 212-229. |
| [13] | 王凡凡, 刘晓斌, 陈龙, 陈程成, 刘永畅, 范丽珍. 室温钠离子电池关键材料研究进展[J]. 电化学(中英文), 2019, 25(1): 55-76. |
| [14] | 颜冲, 寇华日, 颜波, 刘晓静, 李德军, 李喜飞. Ni/Mn3O4/NiMn2O4@RGO空心微球负极的制备及其储钠性能[J]. 电化学(中英文), 2019, 25(1): 112-121. |
| [15] | 夏力行, 刘昊, 刘琳, 谭占鳌. 有机氧化还原液流电池的研究进展[J]. 电化学(中英文), 2018, 24(5): 466-487. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||