电化学(中英文) ›› 2020, Vol. 26 ›› Issue (5): 663-682. doi: 10.13208/j.electrochem.200652
收稿日期:
2020-07-16
修回日期:
2020-08-07
出版日期:
2020-10-28
发布日期:
2020-08-20
通讯作者:
蒋凯
E-mail:kjiang@hust.edu.cn
基金资助:
LI Hao-miao1, ZHOU Hao2, WANG Kang-li1, JIANG Kai1,*()
Received:
2020-07-16
Revised:
2020-08-07
Published:
2020-10-28
Online:
2020-08-20
Contact:
JIANG Kai
E-mail:kjiang@hust.edu.cn
摘要:
液态金属电极电导率高,电极界面容易构建,在充放电过程中可有效避免电极结构形变、枝晶生长等问题,在储能电池领域具有重要应用价值. 本文主要讨论了液态金属电极在液态金属电池、钠硫电池和ZEBRA电池中的应用进展,重点介绍了液态金属电池关键材料体系、充放电机制及电池构型等,评述了液态金属电极储能应用中涉及的熔盐电解质、固态陶瓷隔膜、多场影响因素等方面的重要研究进展,分析了高温密封、腐蚀防护等关键问题,明确了液态金属电极在储能电池应用中的发展方向.
中图分类号:
李浩秒, 周浩, 王康丽, 蒋凯. 液态金属电极的电化学储能应用[J]. 电化学(中英文), 2020, 26(5): 663-682.
LI Hao-miao, ZHOU Hao, WANG Kang-li, JIANG Kai. Liquid Metal Electrodes for Electrochemical Energy Storage Technologies[J]. Journal of Electrochemistry, 2020, 26(5): 663-682.
表1
Li基液态金属电池常见正极金属比较
Cathode candidate | Melting point/oC | Density/ (g·cm-3) | Cost/ (¥·mol-1) | OCV/ V(vs. Li/Li+) | Average OCVa | Alloy stoichiometry | Reported chemistry |
---|---|---|---|---|---|---|---|
Te | 449.5 | 6.24 | 50.7 | ~ 1.7 V | > 1.5 V | Li2Te | Li-Te[ |
Bi | 271.3 | 10.05 | 7.1 | ~ 0.95 V | < 0.8 V | Li3Bi | Li-Bi[ Na-Bi[ |
Sb | 630.7 | 6.70 | 4.3 | ~ 0.92 V | ~ 0.9 V | Li3Sb | Li-Sb[ Ca-Sb[ |
Sn | 231.9 | 5.75~7.28 | 16.5 | ~ 0.80 V | ~ 0.42 V | Li22Sn5 | Li-Sn[ Na-Sn[ |
Pb | 327.5 | 11.34 | 3.2 | ~ 0.75 V | ~ 0.50 V | Li7Pb2 | Li-Pb[ |
表5
常见金属卤化物熔盐体系比较
Electrolyte | Compositon/mol.% | Melting point/oC | Density | Ionic conductivity at 475 oC/(S·cm-1) | |
---|---|---|---|---|---|
25 oC | 500 oC | ||||
LiCl-KCl | 58.8-41.2 | 352[ | 2.01 | 1.59~1.6[ | 1.69[ 1.57 (450 oC) |
LiI-KI | 63.3-36.7 | 288[ | 3.53 | 2.77~2.83[ | 1.56[ 2.24 (607 oC) |
LiCl-LiI | 34.6-65.4 | 368[ | 3.17 | 2.57 | 3.88[68], 3.5 (450 oC) |
LiF-LiCl | 30.5-69.5 | 501[ | 2.17 | -- | -- |
LiBr-RbBr | 42-58 | 271[ | 3.38 | 2.63 (647 oC) | 1.33(567 oC)[ |
LiCl-KCl-CsCl | 57.5-13.3-29.2 | 265 | 2.23 | -- | 0.28 (280 oC)[ |
LiF-LiCl-LiBr | 22-31-47 | 443 | 2.91 | 2.17-2.19[ | 3.21[ |
LiF-LiBr-KBr | 2.5-60-37.53-63-34 | 324[ | 3.093.12 | -- | 1.56[ |
LiCl-LiBr-KBr | 25-37-38 | 310[ | 2.85 | -- | 1.7 |
LiCl-LiBr-LiI | 10.0-16.1-73.9 | 368 | 3.40 | -- | 3.68[ |
LiF-LiCl-LiI | 11.7-29.1-59.2 | 341[ | 3.53 | 2.69[ | 2.77[ |
NaF-NaCl-NaI[ | 15-32-53 | 530 | 2.90 | 2.54(560 oC) | 1.7-2.0(560 oC) |
NaCl-KCl-MgCl2[ | 30-20-50 | 396 | 2.10 | -- | -- |
LiCl-NaCl-CaCl2[ | 38-27-35 | 450 | 2.14 | 1.9 | 2.18 |
LiCl-NaCl-CaCl2-BaCl2[ | 29-20-35-16 | 390 | 2.53 | 2.24(600 oC) | 1.9(600 oC) |
LiCl-NaCl-KCl | 55-9-36 | 346 | -- | -- | 1.50(450 oC) |
[1] |
Yang Z G, Zhang J L, Kintner-Meyer M C W, et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011,111(5):3577-3613.
URL pmid: 21375330 |
[2] |
Faisal M, Hannan M A, Ker P J, et al. Review of energy storage system technologies in microgrid applications: issues and challenges[J]. IEEE Access, 2018,6:35143-35164.
doi: 10.1109/Access.6287639 URL |
[3] |
Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: a battery of choices[J]. Science, 2011,334(6058):928-935.
URL pmid: 22096188 |
[4] | Li X F(李先锋), Zhang H Z(张洪章), Zheng Q(郑琼), et al. Electrochemical energy storage technology in energy revolution[J]. Bulletin of Chinese Academy of Sciences (中国科学院院刊), 2019,34(4):443-449. |
[5] |
Liu D H, Bai Z G, Li M, et al. Developing high safety Li-metal anodes for future high-energy Li-metal batteries: strategies and perspectives[J]. Chemical Society Reviews, 2020,49(15):5407-5445.
URL pmid: 32658219 |
[6] |
Zhang N, Chen X Y, Yu M, et al. Materials chemistry for rechargeable zinc-ion batteries[J]. Chemical Society Reviews, 2020,49(13):4203-4219.
doi: 10.1039/c9cs00349e URL pmid: 32478772 |
[7] |
Rana M, Ahad S A, Li M, et al. Review on areal capacities and long-term cycling performances of lithium sulfur battery at high sulfur loading[J]. Energy Storage Materials, 2019,18:289-310.
doi: 10.1016/j.ensm.2018.12.024 URL |
[8] |
Lin M C, Gong M, Lu B, et al. An ultrafast rechargeable aluminium-ion battery[J]. Nature, 2015,520(7547):324-328.
doi: 10.1038/nature14340 URL |
[9] | Chen H, Gao F, Liu Y J, et al. A defect-free principle for advanced graphene cathode of aluminum-ion battery[J]. Advanced Materials, 2017,26(12):1605958. |
[10] |
Dey A. Electrochemical alloying of lithium in organic electrolytes[J]. Journal of the Electrochemistry Society, 1971,118(10):1547-1549.
doi: 10.1149/1.2407783 URL |
[11] |
Whittingham M S. Lithium batteries and cathode materials[J]. Chemical Reviews, 2004,104(10):4271-4302.
doi: 10.1021/cr020731c URL pmid: 15669156 |
[12] |
Zhang Y, Wang C W, Pastel G, et al. 3D wettable framework for dendrite-free alkali metal anodes[J]. Advanced Energy Materials, 2018,8(18):1800635.
doi: 10.1002/aenm.201800635 URL |
[13] |
Li H M, Yin H Y, Wang K L, et al. Liquid metal electrodes for energy storage batteries[J]. Advanced Energy Materials, 2016,6(14):1600483.
doi: 10.1002/aenm.201600483 URL |
[14] |
Wen Z Y, Hu Y Y, Wu X W, et al. Main challenges for high performance NAS battery: Materials and interfaces[J] Advanced Functional Materials 2013,23(8):1005-1018.
doi: 10.1002/adfm.v23.8 URL |
[15] | Hueso K B, Armand M, Rojo T. High temperature sodium batteries: status, challenges and future trends[J]. Energy & Environmental Science, 2013,6(3):734-749. |
[16] | Ellis B L, Nazar L F. Sodium and sodium-ion energy storage batteries[J]. Current Opinion in Solid State & Materials Science, 2012,16(4):168-177. |
[17] |
Yu Z L, Fang S, Yang J Y, et al. In-situ growth of silicon nanowires on graphite by molten salt electrolysis for high performance lithium-ion batteries[J]. Materials Letters, 2020,273:127946.
doi: 10.1016/j.matlet.2020.127946 URL |
[18] | Xiao W(肖巍), Zhu H(朱华), Yin H Y(尹华意), et al. Novel molten-salt electrolysis processes towards low-carbon metallurgy[J]. Journal of Electrochemistry (电化学), 2012,18(3):193-200. |
[19] | Li Z H(黎朝晖), Zhu F F(朱方方), Li H M(李浩秒), et al. Research progresses of liquid metal batteries[J]. Energy Storage Science and Technology (储能科学与技术), 2017,6(5):981-989. |
[20] | Thackeray M M, Wolverton C, Isaacs E D. Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries[J]. Energy & Environmental Science, 2012,5(7):7854-7863. |
[21] | Weppner W, Huggins R A. Thermodynamic properties of the intermetallic systems lithium-antimony and lithium-bismuth[J]. Journal of The Electrochemical Society, 1978,9(1):7-14. |
[22] | Shimotake H, Rogers G L, Cairns E J, et al. Secondary cells with lithium anodes and immobilized fused-salt electrolytes[J]. Industrial & Engineering Chemistry Process Design and Development, 1969,8(1):51-56. |
[23] |
Ning X H, Phadke S, Chung B, et al. Self-healing Li-Bi liquid metal battery for grid-scale energy storage[J]. Journal of Power Sources, 2015,275:370-376.
doi: 10.1016/j.jpowsour.2014.10.173 URL |
[24] | Cairns, E J, Crouthamel, C E, Fischer, A, et al. Galvanic cells with fused-salt electrolytes[D]. United States: Argonne National Laboratory, 1967. |
[25] | Shimotake H, E Cairns. Bimetallic galvanic cells with fused salt electrolyte[D]. New York: American Society of Mechanical Engineers, 1967. |
[26] |
Newhouse J M, Poizeau S, Kim H, et al. Thermodynamic properties of calcium-magnesium alloys determined by emf measurements[J]. Electrochimica Acta, 2013,91:293-301.
doi: 10.1016/j.electacta.2012.11.063 URL |
[27] |
Wen, John C, Huggins R A. Thermodynamic study of the lithium-tin system[J]. Journal of The Electrochemical Society, 1981,128(6):1181-1187.
doi: 10.1149/1.2127590 URL |
[28] |
Tamaki S, Ishiguro T, Takeda S. Thermodynamic properties of liquid Na-Sn alloys[J]. Journal of Physics F - Metal Physics, 1982,12(8):1613-1624.
doi: 10.1088/0305-4608/12/8/008 URL |
[29] |
Saboungi M, Marr J J, Blander M, et al. Thermodynamic properties of a quasi-ionic alloy from electromotive force measurements: The Li-Pb system[J]. Journal of Chemical Physics, 1978,68(4):1375-1384.
doi: 10.1063/1.435957 URL |
[30] |
Wang K L, Jiang K, Chung B, et al. Lithium-antimony-lead liquid metal battery for grid-level energy storage[J]. Nature, 2014,514(7522):348-350.
doi: 10.1038/nature13700 URL |
[31] | Anonymous. Ambri's better grid battery[J]. Advanced Battery Technology, 2013,49(3):13-14. |
[32] |
Li H M, Wang K L, Cheng S J, et al. High performance liquid metal battery with environmentally friendly antimony-tin positive electrode[J]. ACS Applied Materials & Interfaces, 2016,8(20):12830-12835.
URL pmid: 27149506 |
[33] |
Dai T, Zhao Y, Ning X H, et al. Capacity extended bismuth-antimony cathode for high-performance liquid metal battery[J]. Journal of Power Sources, 2018,381:38-45.
doi: 10.1016/j.jpowsour.2018.01.048 URL |
[34] | Zhao W, Li P, Liu Z W, et al. High-performance antimony-bismuth-tin positive electrode for liquid metal battery[J]. Chemistry of Materials, 2018,30(24):8739-8746. |
[35] | Songster J, Pelton A. The Li-Te (lithium-tellurium) system[J]. Journal of Phase Equilibria and Diffusion, 1992,13:300-303. |
[36] | Li H M, Wang K L, Zhou H, et al. Tellurium-tin based electrodes enabling liquid metal batteries for high specific energy storage applications[J]. Energy Storage Materials, 2018,14:267-271. |
[37] | Matsunaga S, Ishiguro T, Tamaki S. Thermodynamic properties of liquid Na-Pb alloys[J]. Journal of Physics F- Metal Physics, 1983,13(3):587-595. |
[38] | Neale F E, Cusack N E. Thermodynamic properties of liquid sodium-caesium alloys[J]. Journal of Physics F - Metal Physics, 1982,12(12):2839-2850. |
[39] | Weaver R D, Smith S W, Willmann N L. The sodium-tin liquid-metal cell[J]. Journal of The Electrochemical Society, 1962,109(8):653-657. |
[40] |
Kim H, Boysen D A, Newhouse J M, et al. Liquid metal batteries: past, present, and future[J]. Chemical Reviews, 2013,113(3):2075-2099.
URL pmid: 23186356 |
[41] | Cairns E, Gay E, Steunenberg R, et al. Development of high specific energy batteries for electric vehicles[D]. Chicago: Argonne National Lab, 1972. |
[42] | Gay E C, Arntzen J D, Cairns E J, et al. Lithium chalcogen secondary cells for components in electric vehicular propulsion generating systems[D]. Chicago: Argonne National Laboratory, 1972. |
[43] |
Hesson J C, Foster M S, Shimotake H. Self-discharge in alkali metal-containing bimetallic cells[J]. Journal of The Electrochemical Society, 1968,115(8):787-790.
doi: 10.1149/1.2411431 URL |
[44] |
Bradwell D J, Kim H, Sirk A H C, et al. Magnesium-antimony liquid metal battery for stationary energy storage[J]. Journal of the American Chemical Society, 2012,134(4):1895-1897.
doi: 10.1021/ja209759s URL pmid: 22224420 |
[45] |
Poizeau S, Kim H, Newhouse J M, et al. Determination and modeling of the thermodynamic properties of liquid calcium-antimony alloys[J]. Electrochimica Acta, 2012,76:8-15.
doi: 10.1016/j.electacta.2012.04.139 URL |
[46] |
Kim H, Boysen D A, Bradwell D J, et al. Thermodynamic properties of calcium-bismuth alloys determined by emf measurements[J]. Electrochimica Acta, 2012,60:154-162.
doi: 10.1016/j.electacta.2011.11.023 URL |
[47] | Ouchi T, Kim H, Spatocco B L, et al. Calcium-based multi-element chemistry for grid-scale electrochemical energy storage[J]. Nature Communications, 2016,7(1):10999. |
[48] | Kim H, Boysen D A, Ouchi T, et al. Calcium-bismuth electrodes for large-scale energy storage (liquid metal batteries)[J]. Journal of Power Sources, 2013,241:239-248. |
[49] | Sudworth J L. Sodium/nickel chloride (ZEBRA) battery[J]. Journal of Power Sources, 2001,100(1/2):149-163. |
[50] | Coetzer J. A new high energy density battery system[J]. Journal of Power Sources, 1986,18(4):377-380. |
[51] | Lu X C, Xia G G, Lemmon J P, et al. Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives[J]. Journal of Power Sources, 2010,195(9):2431-2442. |
[52] | Hosseinifar M, Petric A. High temperature versus low temperature Zebra (Na/NiCl2) cell performance[J]. Journal of Power Sources, 2012,206:402-408. |
[53] | Ao X(敖昕), Wu X W(吴相伟), Wu T(吴田), et al. Operating temperature on cathode material and electrochemical performance of Na-NiCl2 batteries[J], Journal of Inorganic Materials (无机材料学报), 2017,32(12):1243-1249. |
[54] |
Lu X C, Li G S, Kim J Y, et al. The effects of temperature on the electrochemical performance of sodium-nickel chloride batteries[J]. Journal of Power Sources, 2012,215:288-295.
doi: 10.1016/j.jpowsour.2012.05.020 URL |
[55] |
Virkar A V, Viswanathan L, Biswas D R. On the deterioration of β-alumina ceramics under electrolytic conditions[J]. Journal of Materials Science, 1980,15(2):302-308.
doi: 10.1007/PL00020062 URL |
[56] | Hu Y, Wen Z Y, Wu X W, et al. Nickel nanowire network coating to alleviate interfacial polarization for Na-beta battery applications[J]. Journal of Power Sources, 2013,240:786-795. |
[57] | Breiter M W, Dunn B, Powers R W, et al. Asymmetric behavior of β″-alumina[J]. Electrochimica Acta, 1980,25(5):613-616. |
[58] | Bugden W G, Barrow P, Duncan J H. The control of the resistance rise of sodium sulphur cells[J]. Solid State Ionics, 1981,5:275-278. |
[59] | Reed D, Coffey G, Mast E, et al. Wetting of sodium on β''-Al2O3/YSZ composites for low temperature planar sodium-metal halide batteries[J]. Journal of Power Sour-ces, 2013,227:94-100. |
[60] |
Lu X C, Li G S, Kim J Y, et al. Liquid-metal electrode to enable ultra-low temperature sodium-beta alumina batteries for renewable energy storage[J]. Nature Communications, 2014,5:4578.
doi: 10.1038/ncomms5578 URL pmid: 25081362 |
[61] | Ignaszak A, Pasierb P, Gajerski R, et al. Synjournal and properties of Nasicon-type materials[J]. Thermochimica Acta, 2005,426(1/2):7-14. |
[62] |
Gao X P, Hu Y Y, Li Y, et al. A high-rate and long-life intermediate-temperature Na-NiCl2 battery with dual-fun-ctional Ni-carbon composite nanofibers network[J] ACS Applied Materials & Interfaces 2020,12(22):24767-24776.
doi: 10.1021/acsami.0c04470 URL pmid: 32406671 |
[63] | Ao X, Wen Z Y, Hu Y Y, et al. Enhanced cycle performance of a Na/NiCl2 battery based on Ni particles encapsulated with Ni3S2 layer[J]. Journal of Power Sources, 2017,340:411-418. |
[64] | Jin Y, Liu K, Lang J L, et al. An intermediate temperature garnet-type solid electrolyte-based molten lithium battery for grid energy storage[J]. Nature Energy, 2018,3(9):732-738. |
[65] | Yin H Y, Chung B, Chen F, et al. Faradaically selective membrane for liquid metal displacement batteries[J]. Nature Energy, 2018,3(2):127-131. |
[66] | Bronstein H R, Bredig M A. The electrical conductivity of solutions of alkali metals in their molten halides[J]. Journal of the American Chemical Society, 1958,80(9):2077-2081. |
[67] | Ukshe E A, Bukun N G. The dissolution of metals in fused halides[J]. Russian Chemical Reviews, 1961,30(2):90-107. |
[68] |
Masset P. Iodide-based electrolytes: A promising alternative for thermal batteries[J]. Journal of Power Sources, 2006,160(1):752-757.
doi: 10.1016/j.jpowsour.2006.01.014 URL |
[69] |
Sangster J, Pelton A D. Phase diagrams and thermodynamic properties of the 70 binary alkali halide systems having common ions[J]. Journal of Physical and Chemical Reference Data, 1987,16(3):509-561.
doi: 10.1063/1.555803 URL |
[70] | Masset P, Schoeffert S, Poinso J Y, et al. Retained molten salt electrolytes in thermal batteries[J]. Journal of Power Sources, 2005,139(1/2):356-365. |
[71] | Sridhar R, Johnson C E, Cairns E J. Phase diagrams of the systems LiI-KI and LiI-RbI[J]. Journal of Chemical & Engineering Data, 1970,15(2):244-245. |
[72] | Janz G J, Tomkins R P T, Allen C B, et al. Molten-salts: Volume 4, Part 3, bromides and mixtures - iodides and mixtures - electrical conductance, density, viscosity, and surface-tension data[J]. Journal of Physical & Chemical Reference Data, 1977,6(2):409-596. |
[73] | Masset P, Guidotti RA. Thermal activated (thermal) battery technology-Part II. Molten salt electrolytes[J]. Journal of Power Sources, 2007,164(1):397-414. |
[74] | Masset P. Iodide-based electrolytes: A promising alternative for thermal batteries[J]. Journal of Power Sources, 2006,160(1):688-697. |
[75] |
Kaun T D. Li-Al/FeS2 cell with LiCl-LiBr-KBr electrolyte[J]. Journal of the Electrochemical Society, 1985,132(12):3063-3064.
doi: 10.1149/1.2113726 URL |
[76] | Vissers D, Redey L, Kaun T. Molten-salt electrolytes for high-temperature lithium cells[J]. Journal of Power Sour-ces, 1989,26:37-48. |
[77] | Johnson C E, Hathaway E J. Lithium hydride systems: solid-liquid phase equilibria for the ternary lithium hydride-lithium chloride-lithium iodide system[J]. Journal of Chemical & Engineering Data, 1969,14(2):174-175. |
[78] |
Kelley D H, Weier T. Fluid mechanics of liquid metal batteries[J]. Applied Mechanics Reviews, 2018,70(2):020801.
doi: 10.1115/1.4038699 URL |
[79] | Weber N, Galindo V, Stefani F, et al. Numerical simulation of the Tayler instability in liquid metals[J]. New Jour-nal of Physics, 2013,15(4):043034. |
[80] | Stefani F, Weier T, Gundrum T, et al. How to circumvent the size limitation of liquid metal batteries due to the Tayler instability[J]. Energy Conversion and Management, 2011,52(8/9):2982-2986. |
[81] | Weber N, Galindo V, Stefani F, et al. Current-driven flow instabilities in large-scale liquid metal batteries, and how to tame them[J]. Journal of Power Sources, 2014,265:166-173. |
[82] |
Herreman W, Nore C, Cappanera L, et al. Tayler instability in liquid metal columns and liquid metal batteries[J]. Journal of Fluid Mechanics, 2015,771:79-114.
doi: 10.1017/jfm.2015.159 URL |
[83] | Personnettaz P, Landgraf S, Nimtz M, et al. Mass transport induced asymmetry in charge/discharge behavior of liquid metal batteries[J]. Electrochemistry Communications, 2019,105:106496. |
[84] | Jiang Y D, Cao T Y, Song P D, et al. Effects of magnetically induced flow on electrochemical reacting processes in a liquid metal battery[J]. Journal of Power Sources, 2019,438:226926. |
[85] | Wen Z Y(温兆银), Lin Z X(林祖镶), Gu Z H(顾中华), et al. Behavior of ZrO2 in β-Al2O3 ceramics[J]. Acta Materiae Compositae Sinica (复合材料学报), 1996,13(3):39-43. |
[86] |
Hayashi A, Noi K, Sakuda A, et al. Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries[J]. Nature Communications, 2012,3:856.
doi: 10.1038/ncomms1843 URL pmid: 22617296 |
[87] | Nicholas M G, Crispin R M. Diffusion bonding stainless steel to alumina using aluminium interlayers[J]. Journal of Materials Science, 1982,17(11):3347-3360. |
[88] | Huang Y, Wen Z Y, Yang J, et al. La0.8Sr0.2Co0.3Fe0.7O3-δ as a novel candidate coating material for the positive current collector in sodium sulfur battery[J]. Electrochimica Acta, 2010,55:8632-8637. |
[89] | Pa N, Barney D, Steunenberg R, et al. High-performance batteries for electric-vehicle propulsion and stationary energy storage[D]. Argone Ill, Argonne National Laboratory, 1978. |
[90] | Song S F, Wen Z Y, Liu Y, et al. New glass-ceramic sealants for Na/S battery[J]. Journal of Solid State Ele-ctrochemistry, 2010,14(9):1735-1740. |
[91] | Ouchi T, Sadoway D R. Positive current collector for Li||Sb-Pb liquid metal battery[J]. Journal of Power Sour-ces, 2017,357:158-163. |
[1] | 杨裕生. 电化学储能研究22年回顾[J]. 电化学(中英文), 2020, 26(4): 443-463. |
[2] | 张文强, 于波. 高温固体氧化物电解制氢技术发展现状与展望[J]. 电化学(中英文), 2020, 26(2): 212-229. |
[3] | 王晓敏, 窦湟琳, 田 真, 张久俊. 硫化镍/三维网络石墨烯复合材料制备及其在高性能超级电容器的应用研究[J]. 电化学(中英文), 2017, 23(2): 217-225. |
[4] | 李 泓, 吕迎春. 电化学储能基本问题综述[J]. 电化学(中英文), 2015, 21(5): 412-424. |
[5] | 赵庆,胡宇翔,张凯,王利江,陶占良,陈军*. 介孔碳/硫复合材料(CxSy)与室温钠硫电池[J]. 电化学(中英文), 2013, 19(6): 544-549. |
[6] | 杨建华,曹佳弟. 钠硫电池电极结构改进与电池性能研究[J]. 电化学(中英文), 1996, 2(2): 209-213. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||