电化学(中英文) ›› 2025, Vol. 31 ›› Issue (8): 2412231. doi: 10.61558/2993-074X.3533
罗雨欣, 王静静, 王露, 闫子一, 马艺, 薄鑫*(), 党静霜*(
), 王增林*(
)
收稿日期:
2024-12-23
修回日期:
2025-02-23
接受日期:
2025-03-28
发布日期:
2025-03-28
出版日期:
2025-08-28
Luo Yu-Xin, Wang Jing-Jing, Wang Lu, Yan Zi-Yi, Ma Yi, Bo Xin*(), Dang Jing-Shuang*(
), Wang Zeng-Lin*(
)
Received:
2024-12-23
Revised:
2025-02-23
Accepted:
2025-03-28
Online:
2025-03-28
Published:
2025-08-28
Contact:
Xin Bo, E-mail: About author:
First author contact:# These authors contribute equally to this work.
摘要:
在化学镀钴过程中,我们发现添加剂糖精的加入可明显改变化学镀钴层表面的形貌、织构取向及镀层的导电性。研究表明,当糖精添加量为3 mg·L-1时,钴镀层由无序大晶粒转变为蜂巢状结构,具有密排六方(HCP)钴晶体的(002)择优取向,其电阻率降低至14.4 μΩ·cm,经过热处理后,电阻率进一步降低至10.7 μΩ·cm,这对于其在芯片中的应用具有重要价值。当糖精浓度升高时,晶粒逐渐细化,呈现“石林”状结构,择优取向不变,而糖精的加入在一定程度上提高了镀钴膜的纯度。通过密度泛函理论对钴镀层结晶行为的研究表明,糖精分子可吸附于钴密排晶面的特定c位点,抑制abc堆积方式生长,诱导晶体按ab堆积方式生长,从而实现HCP(002)晶面的择优生长。
罗雨欣, 王静静, 王露, 闫子一, 马艺, 薄鑫, 党静霜, 王增林. 化学镀钴过程中添加剂糖精对结晶取向的调控[J]. 电化学(中英文), 2025, 31(8): 2412231.
Luo Yu-Xin, Wang Jing-Jing, Wang Lu, Yan Zi-Yi, Ma Yi, Bo Xin, Dang Jing-Shuang, Wang Zeng-Lin. Effect of Saccharin on Crystallization Behavior of Electroless Cobalt Plating[J]. Journal of Electrochemistry, 2025, 31(8): 2412231.
Step | Content | Condition |
---|---|---|
Degreasing | NaOH 80 g·L-1, NaCO3 15 g·L-1, Na3PO4 30 g·L-1 | 80 °C, 15 min |
Swelling | NMP 100 ml·L-1, NaOH, 90 g·L-1, DGBE 20 ml·L-1 | 60 °C, 10 min |
Micro-etching | H2SO4 12.3 mol·L-1, MnO2, 30 g·L-1 | 70 °C, 20 min |
Neutralization | 98% H2SO4 100 ml·L-1, OA 28.2 g·L-1 | 60 °C, 10 min |
Presoak | OPC-SALT 250 g·L-1 | Room Temp., 2 min |
Activation | 35% HCl 30 ml·L-1, OPC-SALT 170 g·L-1, OPC-80 50 ml·L-1 | Room Temp., 6 min |
Sensitization | 5% HCl 100 ml·L-1 | Room Temp., 10 min |
[1] | Sun T, Yao B, Warren A P, Barmak K, Toney M F, Peale R E, Coffey K R. Surface and grain-boundary scattering in nanometric Cu films[J]. Phys. Rev. B., 2010, 81(15):155454. https://doi.org/10.1103/PhysRevB.81.155454. |
[2] | Zhang W, Brongersma S H, Richard O, Brijs B, Palmans R, Froyen L, Maex K. Influence of the electron mean free path on the resistivity of thin metal films[J]. Microelectron. Eng., 2004, 76(1-4): 146-152. https://doi.org/10.1016/j.mee.2004.07.041. |
[3] | Choi D. Potential of ruthenium and cobalt as next-generation semiconductor interconnects[J]. Korean J. Met. Mater., 2018, 56(8): 605-610. http://dx.doi.org/10.3365/KJMM.2018.56.8.605. |
[4] | Tan C M, Roy A, Reports E R. Electromigration in ULSI interconnects[J]. Mater. Sci., 2007, 58(1-2): 1-75. https://doi.org/10.1016/j.mser.2007.04.002. |
[5] | Bekiaris N, Wu Z Y, Ren H, Naik M, Park J H, Lee M, Ha T H, Hou W, Bakke J R, Gage M. Cobalt fill for advanced interconnects[C]//2017 IEEE International Interconnect Technology Conference (IITC), Hsinchu, Taiwan, 2017: 1-3. https://doi.org/10.1109/IITC-AMC.2017.7968981. |
[6] | Bourzac K. Cobalt could untangle chips' wiring problems[J]. IEEE Spectrum., 2018, 55(2): 12-13. https://doi.org/10.1109/MSPEC.2018.8278123. |
[7] | Wu J, Wafula F, Branagan S, Suzuki H, van Eisden J. Mechanism of cobalt bottom-up filling for advanced node interconnect metallization[J]. J. Electrochem. Soc., 2018, 166(1): D3136-D3141. https://doi.org/10.1149/2.0161901jes. |
[8] | Auth C, Aliyarukunju A, Asoro M, Bergstrom D, Bhagwat V, Birdsall J, Bisnik N, Buehler M, Chikarmane V, Ding G. A 10nm high performance and low-power CMOS technology featuring 3 rd generation FinFET transistors, Self-Aligned Quad Patterning, contact over active gate and cobalt local interconnects[C]// International Electron Devices Meeting(IEDM). 2017: 29.1. 1-29.1.4. https://doi.org/10.1109/IEDM.2017.8268472. |
[9] | Gusley R, Ezzat S, Coffey K R, West A C, Barmak K. Influence of the seed layer and electrolyte on the epitaxial electrodeposition of Co (0001) for the fabrication of single crystal interconnects[J]. J. Electrochem. Soc., 2020, 167(16): 162503. https://doi.org/10.1149/1945-7111/abcd13. |
[10] | Kang J, Sung M, Byun J, Kwon O J, Kim J J. Superconformal cobalt electrodeposition with a hydrogen evolution reaction suppressing additive[J]. J. Electrochem. Soc., 2020, 167(16): 162514. https://doi.org/10.1149/1945-7111/abd3b9. |
[11] | Ni X R, Chen Y M, Jin X F, Wang C, Huang Y Z, Hong Y, Su X H, Zhou G Y, Wang S X, He W, Chen Q G. Investigation of polyvinylpyrrolidone as an inhibitor for trench super-filling of cobalt electrodeposition[J]. J. Taiwan Inst. Chem. E, 2020, 112: 232-239. https://doi.org/10.1016/j.jtice.2020.06.010. |
[12] | Kongstein O, Haarberg G, Thonstad. Current efficiency and kinetics of cobalt electrodeposition in acid chloride solutions. Part I: The influence of current density, pH and temperature[J]. J. Appl. Electrochem., 2007, 37: 669-674. https://doi.org/10.1007/s10800-007-9299-z |
[13] | Wang Z L, Obata R, Sakaue H, Takahagi T, Shingubara S. Bottom-up copper fill with addition of mercapto alkyl carboxylic acid in electroless plating[J]. Electrochim. Acta., 2006, 51(12): 2442-2446. https://doi.org/10.1016/j.electacta.2005.07.023. |
[14] | Wang Z X, Wang S, Yang Z, Wang Z L. Influence of additives and pulse parameters on uniformity of through-hole copper plating[J]. Transactions of the IMF., 2013, 88(5): 272-276. https://doi.org/10.1179/002029610X12791981507884. |
[15] | Yang Z F, Wang Z X, Wang X, Wang Z L. Comparison of bottom‐up filling in electroless plating with an addition of PEG, PPG and EPE[J]. Chin. J. Chem., 2011, 29(3): 422-426. https://doi.org/10.1002/cjoc.201190098. |
[16] | Zan L X, Liu Z H, Yang Z P, Wang Z L. A synergy effect of 2-MBT and PE-3650 on the bottom-up filling in electroless copper plating[J]. Electrochem Solid St., 2011, 14(12). https://doi.org/10.1149/2.018112esl. |
[17] | Hassan Zadeh Shirazi S M, Bahrololoom M E, Shariat M H. The role of functional groups of saccharin in electrodeposition of nanocrystalline nickel[J]. Surf. Eng. Appl. Electrochem., 2016, 52(5): 434-442. https://doi.org/10.3103/S1068375516050112. |
[18] | Sen R, Das S, Das K. Influence of sodium saccharin on the microstructure of pulse electrodeposited Ni-CeO2 nanocomposite coating[J]. Int. J. Nanosci., 2012, 12(10): 7944-7949. https://doi.org/10.1166/jnn.2012.6654. |
[19] | Wang Y H, Yu M Q, Luo H L, Qiao Q, Xiao Z Z, Zhao Y, Zhao L L, Sun H, Xu Z F, Matsugi K, Yu J K. Effect of saccharin on the structure and properties of electrodeposition NiWP alloy coatings[J]. J. Mater. Eng. Perform., 2016, 25(10): 4402-4407. https://doi.org/10.1007/s11665-016-2298-7. |
[20] | Altamirano-Garcia L, Vazquez-Arenas J, Pritzker M, Luna-Sánchez R, Cabrera-Sierra R. Effects of saccharin and anions (SO42-, Cl-) on the electrodeposition of Co-Ni alloys[J]. J. Solid State Electrochem., 2014, 19(2): 423-433. https://doi.org/10.1007/s10008-014-2616-7. |
[21] | Hoghoghifard S, Mokhtari H. Improving the microwave absorption in Ni-coated fabrics by saccharin addition in plating bath[J]. J. Ind. Text., 2018, 49(3): 402-411. https://doi.org/10.1177/1528083718787525. |
[22] | Kolonits T, Jenei P, Péter L, Bakonyi I, Czigány Z, Gubicza J. Effect of bath additives on the microstructure, lattice defect density and hardness of electrodeposited nanocrystalline Ni films[J]. Surf. Coat. Technol., 2018, 349: 611-621. https://doi.org/10.1016/j.surfcoat.2018.06.052. |
[23] | Li Y Q, Ren P H, Li R P, Zhang Y H, Zhang J Q, Yang P X, An M Z. A novel bright additive for copper electroplating: electrochemical and theoretical study[J]. Ionics, 2023, 29(1): 363-375. https://doi.org/10.1007/s11581-022-04799-7. |
[24] | Wang C, Zhang J Q, Yang P X, An M Z. Electrochemical behaviors of Janus Green B in through-hole copper electroplating: An insight by experiment and density functional theory calculation using Safranine T as a comparison[J]. Electrochim. Acta, 2013, 92: 356-364. https://doi.org/10.1016/j.electacta.2013.01.064. |
[25] | Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comput. Mater. Sci., 1996, 6(1): 15-50. https://doi.org/10.1016/0927-0256(96)00008-0. |
[26] |
Blöchl P E. Projector augmented-wave method[J]. Phys. Rev. B, 1994, 50(24): 17953. https://doi.org/10.1103/PhysRevB.50.17953.
doi: 10.1103/physrevb.50.17953 URL pmid: 9976227 |
[27] | Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys. Rev. B, 1999, 59(3): 1758. https://doi.org/10.1103/PhysRevB.59.1758. |
[28] |
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996, 77(18): 3865. https://doi.org/10.1103/PhysRevLett.77.3865.
doi: 10.1103/PhysRevLett.77.3865 URL pmid: 10062328 |
[29] | Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Phys. Rev. B, 1976, 13(12): 5188. https://doi.org/10.1103/PhysRevB.13.5188. |
[30] | Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Petersson G, Nakatsuji H. Gaussian 16, revision a. 03, gaussian, inc., wallingford ct[EB/CP]. Gaussian16, 2016. |
[31] | Dong L W, Zhong S J, Yuan B T, Li Y Q, Liu J P, Ji Y P, Chen D J, Liu Y P, Yang C H, Han J C, He W D. Reconstruction of solid electrolyte interphase with SrI2 reactivates dead Li for durable anode‐free Li‐metal batteries[J]. Angew. Chem. Int. Ed., 2023, 135(23): e202301073. https://doi.org/10.1002/anie.202301073. |
[32] | Li R P, Li Y Q, Yang P X, Ren P H, Wang D, Lu X Y, Xu R Y, Li Y H, Xue J M, Zhang J Q. Synergistic interface engineering and structural optimization of non-noble metal telluride-nitride electrocatalysts for sustainably overall seawater electrolysis[J]. Appl. Catal. B-Environ., 2022, 318: 121834. https://doi.org/10.1016/j.apcatb.2022.121834. |
[33] | Li Y Q, Ren P H, Zhang Y H, Li R P, Zhang J Q, Yang P X, Liu A M, Wang G Z, An M Z. Investigation of novel leveler Rhodamine B on copper superconformal electrodeposition of microvias by theoretical and experimental studies[J]. Appl. Surf. Sci., 2023, 615: 156266. https://doi.org/10.1016/j.apsusc.2022.156266. |
[34] | Li Y Q, Li C Z, Li R P, Peng X S, Zhang J Q, Yang P X, Wang G Z, Wang B, Broekmann P, An M Z. Experimental and theoretical study of the new leveler basic blue 1 during copper superconformal growth[J]. ACS Appl. Mater. Interfaces, 2023, 15(40): 47628-47639. https://doi.org/10.1021/acsami.3c06567. |
[35] | Ma X C, Li Y Q, Yang P X, Zhang J Q, An M Z. Influence of suppressing additive malachite green on superconformal cobalt electrodeposition[J]. J. Electroanal. Chem., 2022, 921: 116696. https://doi.org/10.1016/j.jelechem.2022.116696. |
[36] | Burton W K, Cabrera N t, Frank F. The growth of crystals and the equilibrium structure of their surfaces[J]. Phil. Trans. R. Soc. A, 1951, 243(866): 299-358. https://doi.org/10.1098/rsta.1951.0006. |
[1] | 孙琼, 杜海会, 孙田将, 李典涛, 程敏, 梁静, 李海霞, 陶占良. 基于山梨醇添加剂电解质的可逆锌电化学[J]. 电化学(中英文), 2024, 30(7): 2314002-. |
[2] | 张修庆, 唐帅, 付永柱. 锂硫电池电解液功能性添加剂研究进展[J]. 电化学(中英文), 2023, 29(4): 2217005-. |
[3] | 谭柏照, 梁剑伦, 赖子亮, 罗继业. 高均匀性的铜柱凸块电镀[J]. 电化学(中英文), 2022, 28(7): 2213004-. |
[4] | 沈钰, 李冰冰, 马艺, 王增林. 化学镀钴和超级化学镀填充的研究进展[J]. 电化学(中英文), 2022, 28(7): 2213002-. |
[5] | 徐佳莹, 王守绪, 苏元章, 杜永杰, 齐国栋, 何为, 周国云, 张伟华, 唐耀, 罗毓瑶, 陈苑明. 特殊整平剂甲基橙在通孔电镀铜的应用[J]. 电化学(中英文), 2022, 28(7): 2213003-. |
[6] | 纪执敬, 凌惠琴, 吴培林, 余瑞益, 于大全, 李明. 玻璃通孔三维互连镀铜填充技术发展现状[J]. 电化学(中英文), 2022, 28(6): 2104461-. |
[7] | 杨森, 王文昌, 张然, 秦水平, 吴敏娴, 光崎尚利, 陈智栋. 醇硫基丙烷磺酸钠对电解高性能锂电铜箔的影响[J]. 电化学(中英文), 2022, 28(6): 2104501-. |
[8] | 杨凯, 陈际达, 陈世金, 许伟廉, 郭茂桂, 廖金超, 吴熷坤. 高深径比通孔脉冲电镀添加剂及电镀参数的优化[J]. 电化学(中英文), 2022, 28(6): 2104491-. |
[9] | 缪桦, 李明瑞, 邹文中, 周国云, 王守绪, 叶晓菁, 朱凯. Sn-Ag-Cu三元合金焊料电沉积中添加剂的影响研究[J]. 电化学(中英文), 2022, 28(6): 2104411-. |
[10] | 战充波, 张润佳, 付旭, 孙海静, 周欣, 王保杰, 孙杰. 氯离子对ChCl-Urea低共熔溶剂中银电沉积的电化学行为影响[J]. 电化学(中英文), 2022, 28(5): 2111151-. |
[11] | 谢茂玲, 王钧, 胡晨吉, 郑磊, 孔华彬, 沈炎宾, 陈宏伟, 陈立桅. 基于非亲核电解液构建稳定的镁离子电池[J]. 电化学(中英文), 2022, 28(3): 2108561-. |
[12] | 黄波, 张新胜, 钮东方, 胡硕真. 对称季铵碱的烷基链长度对草酸电还原反应的影响[J]. 电化学(中英文), 2021, 27(5): 529-539. |
[13] | 张彪, 帅毅, 王玉, 杨纳川, 陈康华. 碳酸酯类电解液中Mg(NO3)2添加剂抑制锂枝晶生长的研究[J]. 电化学(中英文), 2021, 27(4): 423-428. |
[14] | 王赵云, 金磊, 杨家强, 李威青, 詹东平, 杨防祖, 孙世刚. 高密度互连印制电路板孔金属化研究和进展[J]. 电化学(中英文), 2021, 27(3): 316-331. |
[15] | 王翀, 彭川, 向静, 陈苑明, 何为, 苏新虹, 罗毓瑶. 印制电路中电镀铜技术研究及应用[J]. 电化学(中英文), 2021, 27(3): 257-268. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||